L(s) = 1 | + 1.30i·2-s + 0.537i·3-s + 0.299·4-s + 5-s − 0.700·6-s − 1.29·7-s + 2.99i·8-s + 2.71·9-s + 1.30i·10-s − 0.537i·11-s + 0.160i·12-s − 5.71·13-s − 1.69i·14-s + 0.537i·15-s − 3.31·16-s − 6.91i·17-s + ⋯ |
L(s) = 1 | + 0.922i·2-s + 0.310i·3-s + 0.149·4-s + 0.447·5-s − 0.285·6-s − 0.491·7-s + 1.06i·8-s + 0.903·9-s + 0.412i·10-s − 0.161i·11-s + 0.0464i·12-s − 1.58·13-s − 0.452i·14-s + 0.138i·15-s − 0.827·16-s − 1.67i·17-s + ⋯ |
Λ(s)=(=(145s/2ΓC(s)L(s)(0.0556−0.998i)Λ(2−s)
Λ(s)=(=(145s/2ΓC(s+1/2)L(s)(0.0556−0.998i)Λ(1−s)
Degree: |
2 |
Conductor: |
145
= 5⋅29
|
Sign: |
0.0556−0.998i
|
Analytic conductor: |
1.15783 |
Root analytic conductor: |
1.07602 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ145(86,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 145, ( :1/2), 0.0556−0.998i)
|
Particular Values
L(1) |
≈ |
0.916560+0.866900i |
L(21) |
≈ |
0.916560+0.866900i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1−T |
| 29 | 1+(−0.299+5.37i)T |
good | 2 | 1−1.30iT−2T2 |
| 3 | 1−0.537iT−3T2 |
| 7 | 1+1.29T+7T2 |
| 11 | 1+0.537iT−11T2 |
| 13 | 1+5.71T+13T2 |
| 17 | 1+6.91iT−17T2 |
| 19 | 1−4.30iT−19T2 |
| 23 | 1−5.01T+23T2 |
| 31 | 1+8.44iT−31T2 |
| 37 | 1+7.98iT−37T2 |
| 41 | 1+0.698iT−41T2 |
| 43 | 1−10.2iT−43T2 |
| 47 | 1+0.537iT−47T2 |
| 53 | 1−7.11T+53T2 |
| 59 | 1+7.71T+59T2 |
| 61 | 1−5.91iT−61T2 |
| 67 | 1+9.01T+67T2 |
| 71 | 1+4.28T+71T2 |
| 73 | 1−6.21iT−73T2 |
| 79 | 1−10.2iT−79T2 |
| 83 | 1+2.70T+83T2 |
| 89 | 1−9.67iT−89T2 |
| 97 | 1+2.07iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.52009534586050623017846878307, −12.41018957565350608735111252967, −11.31273117567351878626936998791, −9.960339939109492255377409886476, −9.354268791870579598614692943461, −7.66425740271153784813463286524, −7.02240022142731459812814913238, −5.77454810245506480204364415517, −4.65466071700818048037903256614, −2.57949465807300233005271469073,
1.69718507159421331233031470623, 3.10748322824270907517974505288, 4.76583666621125208548521017164, 6.58236105731666068803614645463, 7.25194686903495725995506576691, 9.035105806642557997769587241157, 10.12079407181254602969244465614, 10.61572978638732808332179461419, 12.08343053442731732988021798043, 12.67462688514460083704161215431