Properties

Label 2-1450-1.1-c1-0-17
Degree $2$
Conductor $1450$
Sign $1$
Analytic cond. $11.5783$
Root an. cond. $3.40269$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 2.61·3-s + 4-s − 2.61·6-s + 0.381·7-s − 8-s + 3.85·9-s + 2·11-s + 2.61·12-s + 2.61·13-s − 0.381·14-s + 16-s + 5.61·17-s − 3.85·18-s − 2·19-s + 21-s − 2·22-s − 1.85·23-s − 2.61·24-s − 2.61·26-s + 2.23·27-s + 0.381·28-s − 29-s + 2.85·31-s − 32-s + 5.23·33-s − 5.61·34-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.51·3-s + 0.5·4-s − 1.06·6-s + 0.144·7-s − 0.353·8-s + 1.28·9-s + 0.603·11-s + 0.755·12-s + 0.726·13-s − 0.102·14-s + 0.250·16-s + 1.36·17-s − 0.908·18-s − 0.458·19-s + 0.218·21-s − 0.426·22-s − 0.386·23-s − 0.534·24-s − 0.513·26-s + 0.430·27-s + 0.0721·28-s − 0.185·29-s + 0.512·31-s − 0.176·32-s + 0.911·33-s − 0.963·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1450 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1450\)    =    \(2 \cdot 5^{2} \cdot 29\)
Sign: $1$
Analytic conductor: \(11.5783\)
Root analytic conductor: \(3.40269\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1450,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.306189787\)
\(L(\frac12)\) \(\approx\) \(2.306189787\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
5 \( 1 \)
29 \( 1 + T \)
good3 \( 1 - 2.61T + 3T^{2} \)
7 \( 1 - 0.381T + 7T^{2} \)
11 \( 1 - 2T + 11T^{2} \)
13 \( 1 - 2.61T + 13T^{2} \)
17 \( 1 - 5.61T + 17T^{2} \)
19 \( 1 + 2T + 19T^{2} \)
23 \( 1 + 1.85T + 23T^{2} \)
31 \( 1 - 2.85T + 31T^{2} \)
37 \( 1 + 8.94T + 37T^{2} \)
41 \( 1 + 5.70T + 41T^{2} \)
43 \( 1 - 5.61T + 43T^{2} \)
47 \( 1 - 10.4T + 47T^{2} \)
53 \( 1 - 11.6T + 53T^{2} \)
59 \( 1 + 3.85T + 59T^{2} \)
61 \( 1 + 4.14T + 61T^{2} \)
67 \( 1 - 8.94T + 67T^{2} \)
71 \( 1 - 7.70T + 71T^{2} \)
73 \( 1 - 14.5T + 73T^{2} \)
79 \( 1 + 13.5T + 79T^{2} \)
83 \( 1 + 2.94T + 83T^{2} \)
89 \( 1 - 2T + 89T^{2} \)
97 \( 1 - 13.8T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.334959039394387026234299613392, −8.667296058440451585561558864413, −8.153090784815264188905769993700, −7.42858905136872444202183355365, −6.55318092212780382572152232415, −5.48076939482947081225323196068, −3.99041399639357417512066942090, −3.36182028459217992485508310786, −2.27607005241651282330605319329, −1.26442527499546901267205251222, 1.26442527499546901267205251222, 2.27607005241651282330605319329, 3.36182028459217992485508310786, 3.99041399639357417512066942090, 5.48076939482947081225323196068, 6.55318092212780382572152232415, 7.42858905136872444202183355365, 8.153090784815264188905769993700, 8.667296058440451585561558864413, 9.334959039394387026234299613392

Graph of the $Z$-function along the critical line