Properties

Label 2-1450-145.144-c1-0-30
Degree $2$
Conductor $1450$
Sign $0.0830 + 0.996i$
Analytic cond. $11.5783$
Root an. cond. $3.40269$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 6-s + 2i·7-s + 8-s − 2·9-s − 5i·11-s − 12-s i·13-s + 2i·14-s + 16-s − 2·17-s − 2·18-s − 4i·19-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 0.5·4-s − 0.408·6-s + 0.755i·7-s + 0.353·8-s − 0.666·9-s − 1.50i·11-s − 0.288·12-s − 0.277i·13-s + 0.534i·14-s + 0.250·16-s − 0.485·17-s − 0.471·18-s − 0.917i·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0830 + 0.996i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1450 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0830 + 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1450\)    =    \(2 \cdot 5^{2} \cdot 29\)
Sign: $0.0830 + 0.996i$
Analytic conductor: \(11.5783\)
Root analytic conductor: \(3.40269\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1450} (1449, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1450,\ (\ :1/2),\ 0.0830 + 0.996i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.526420793\)
\(L(\frac12)\) \(\approx\) \(1.526420793\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
5 \( 1 \)
29 \( 1 + (5 + 2i)T \)
good3 \( 1 + T + 3T^{2} \)
7 \( 1 - 2iT - 7T^{2} \)
11 \( 1 + 5iT - 11T^{2} \)
13 \( 1 + iT - 13T^{2} \)
17 \( 1 + 2T + 17T^{2} \)
19 \( 1 + 4iT - 19T^{2} \)
23 \( 1 + 6iT - 23T^{2} \)
31 \( 1 - 5iT - 31T^{2} \)
37 \( 1 - 8T + 37T^{2} \)
41 \( 1 + 10iT - 41T^{2} \)
43 \( 1 - 9T + 43T^{2} \)
47 \( 1 - 3T + 47T^{2} \)
53 \( 1 + iT - 53T^{2} \)
59 \( 1 + 10T + 59T^{2} \)
61 \( 1 + 10iT - 61T^{2} \)
67 \( 1 + 8iT - 67T^{2} \)
71 \( 1 + 8T + 71T^{2} \)
73 \( 1 + 16T + 73T^{2} \)
79 \( 1 - iT - 79T^{2} \)
83 \( 1 - 14iT - 83T^{2} \)
89 \( 1 + 14iT - 89T^{2} \)
97 \( 1 + 2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.035081040473943974482121580754, −8.712886386613087680065536257966, −7.64455995498451515650231633919, −6.48868778056730537354213718191, −5.91780388695449228495106273879, −5.35296248584864309524614005839, −4.36541657079840703113616755052, −3.13473793645632531580293932047, −2.42779227717659701405065795187, −0.51371193032637462473491901349, 1.48329155079401262386443180218, 2.71732805509541168403481958684, 4.02998248938515837541060258883, 4.55002360444251005213259639880, 5.64209652715543392642684476361, 6.22186394519925670254467387333, 7.35378838434309006612437374240, 7.64087204789015925113913405095, 9.052896965761173809508087689577, 9.867570504594026311819857712780

Graph of the $Z$-function along the critical line