Properties

Label 2-1450-1.1-c3-0-72
Degree $2$
Conductor $1450$
Sign $1$
Analytic cond. $85.5527$
Root an. cond. $9.24947$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 7·3-s + 4·4-s − 14·6-s + 18·7-s − 8·8-s + 22·9-s + 27·11-s + 28·12-s + 57·13-s − 36·14-s + 16·16-s + 44·17-s − 44·18-s + 152·19-s + 126·21-s − 54·22-s + 152·23-s − 56·24-s − 114·26-s − 35·27-s + 72·28-s − 29·29-s − 173·31-s − 32·32-s + 189·33-s − 88·34-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.34·3-s + 1/2·4-s − 0.952·6-s + 0.971·7-s − 0.353·8-s + 0.814·9-s + 0.740·11-s + 0.673·12-s + 1.21·13-s − 0.687·14-s + 1/4·16-s + 0.627·17-s − 0.576·18-s + 1.83·19-s + 1.30·21-s − 0.523·22-s + 1.37·23-s − 0.476·24-s − 0.859·26-s − 0.249·27-s + 0.485·28-s − 0.185·29-s − 1.00·31-s − 0.176·32-s + 0.996·33-s − 0.443·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1450 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1450\)    =    \(2 \cdot 5^{2} \cdot 29\)
Sign: $1$
Analytic conductor: \(85.5527\)
Root analytic conductor: \(9.24947\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1450,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(3.694278989\)
\(L(\frac12)\) \(\approx\) \(3.694278989\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + p T \)
5 \( 1 \)
29 \( 1 + p T \)
good3 \( 1 - 7 T + p^{3} T^{2} \)
7 \( 1 - 18 T + p^{3} T^{2} \)
11 \( 1 - 27 T + p^{3} T^{2} \)
13 \( 1 - 57 T + p^{3} T^{2} \)
17 \( 1 - 44 T + p^{3} T^{2} \)
19 \( 1 - 8 p T + p^{3} T^{2} \)
23 \( 1 - 152 T + p^{3} T^{2} \)
31 \( 1 + 173 T + p^{3} T^{2} \)
37 \( 1 - 120 T + p^{3} T^{2} \)
41 \( 1 + 314 T + p^{3} T^{2} \)
43 \( 1 + 339 T + p^{3} T^{2} \)
47 \( 1 - 357 T + p^{3} T^{2} \)
53 \( 1 - 59 T + p^{3} T^{2} \)
59 \( 1 + 572 T + p^{3} T^{2} \)
61 \( 1 + 420 T + p^{3} T^{2} \)
67 \( 1 + 660 T + p^{3} T^{2} \)
71 \( 1 - 726 T + p^{3} T^{2} \)
73 \( 1 + 1004 T + p^{3} T^{2} \)
79 \( 1 - 361 T + p^{3} T^{2} \)
83 \( 1 - 168 T + p^{3} T^{2} \)
89 \( 1 - 58 T + p^{3} T^{2} \)
97 \( 1 - 1206 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.023033361697044172518213687628, −8.505340476975161898783946594135, −7.68886156672470684860865825001, −7.21133798568477144104385570898, −5.97326210595678134413803570878, −4.94068577611298834219452285818, −3.59110659985683191283649675123, −3.09601615468710780561849551410, −1.70705876185381951608476608692, −1.13427177783275707165701388237, 1.13427177783275707165701388237, 1.70705876185381951608476608692, 3.09601615468710780561849551410, 3.59110659985683191283649675123, 4.94068577611298834219452285818, 5.97326210595678134413803570878, 7.21133798568477144104385570898, 7.68886156672470684860865825001, 8.505340476975161898783946594135, 9.023033361697044172518213687628

Graph of the $Z$-function along the critical line