L(s) = 1 | + (−1.41 + 2.44i)3-s + 0.518i·5-s + (0.866 − 0.5i)7-s + (−2.49 − 4.31i)9-s + (−1.40 − 0.812i)11-s + (1.42 − 3.31i)13-s + (−1.26 − 0.733i)15-s + (0.974 + 1.68i)17-s + (−2.15 + 1.24i)19-s + 2.82i·21-s + (4.57 − 7.91i)23-s + 4.73·25-s + 5.60·27-s + (2.61 − 4.52i)29-s − 5.79i·31-s + ⋯ |
L(s) = 1 | + (−0.815 + 1.41i)3-s + 0.232i·5-s + (0.327 − 0.188i)7-s + (−0.830 − 1.43i)9-s + (−0.424 − 0.244i)11-s + (0.395 − 0.918i)13-s + (−0.327 − 0.189i)15-s + (0.236 + 0.409i)17-s + (−0.494 + 0.285i)19-s + 0.616i·21-s + (0.952 − 1.65i)23-s + 0.946·25-s + 1.07·27-s + (0.485 − 0.841i)29-s − 1.04i·31-s + ⋯ |
Λ(s)=(=(1456s/2ΓC(s)L(s)(0.991−0.129i)Λ(2−s)
Λ(s)=(=(1456s/2ΓC(s+1/2)L(s)(0.991−0.129i)Λ(1−s)
Degree: |
2 |
Conductor: |
1456
= 24⋅7⋅13
|
Sign: |
0.991−0.129i
|
Analytic conductor: |
11.6262 |
Root analytic conductor: |
3.40972 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1456(225,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1456, ( :1/2), 0.991−0.129i)
|
Particular Values
L(1) |
≈ |
1.108428418 |
L(21) |
≈ |
1.108428418 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1+(−0.866+0.5i)T |
| 13 | 1+(−1.42+3.31i)T |
good | 3 | 1+(1.41−2.44i)T+(−1.5−2.59i)T2 |
| 5 | 1−0.518iT−5T2 |
| 11 | 1+(1.40+0.812i)T+(5.5+9.52i)T2 |
| 17 | 1+(−0.974−1.68i)T+(−8.5+14.7i)T2 |
| 19 | 1+(2.15−1.24i)T+(9.5−16.4i)T2 |
| 23 | 1+(−4.57+7.91i)T+(−11.5−19.9i)T2 |
| 29 | 1+(−2.61+4.52i)T+(−14.5−25.1i)T2 |
| 31 | 1+5.79iT−31T2 |
| 37 | 1+(8.85+5.11i)T+(18.5+32.0i)T2 |
| 41 | 1+(−3.64−2.10i)T+(20.5+35.5i)T2 |
| 43 | 1+(−0.498−0.863i)T+(−21.5+37.2i)T2 |
| 47 | 1+4.51iT−47T2 |
| 53 | 1+8.89T+53T2 |
| 59 | 1+(−5.37+3.10i)T+(29.5−51.0i)T2 |
| 61 | 1+(−6.73−11.6i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−7.25−4.18i)T+(33.5+58.0i)T2 |
| 71 | 1+(−4.50+2.59i)T+(35.5−61.4i)T2 |
| 73 | 1−11.8iT−73T2 |
| 79 | 1+0.982T+79T2 |
| 83 | 1−8.91iT−83T2 |
| 89 | 1+(10.4+6.00i)T+(44.5+77.0i)T2 |
| 97 | 1+(−3.82+2.21i)T+(48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.868937880017665334029250255849, −8.726753687971771773697726389307, −8.195589950756270725176142087818, −6.93024114851158345461845494059, −5.99298022452267472988392814159, −5.32776171473176009808740325637, −4.50939273781209398515638121034, −3.73162594598680162853623328115, −2.65182442789504726519732955685, −0.59144387401092932543557465484,
1.10909008705558905456468872850, 1.92101656813415784775377751416, 3.25344095826931815841350051146, 4.89882774148071598088080197941, 5.29618827925500518521500842648, 6.48486873919834450845105602293, 6.94311845518354095331771373886, 7.69443384801146911673875131384, 8.603131985876215426754583693027, 9.307434418417840798766633412083