L(s) = 1 | − 5-s + (−0.5 − 0.866i)7-s + (1.5 + 2.59i)9-s + (−1 + 1.73i)11-s + (3.5 + 0.866i)13-s + (1.5 + 2.59i)17-s + (−3 − 5.19i)19-s + (−2 + 3.46i)23-s − 4·25-s + (3.5 − 6.06i)29-s − 4·31-s + (0.5 + 0.866i)35-s + (−4.5 + 7.79i)37-s + (−4.5 + 7.79i)41-s + (5 + 8.66i)43-s + ⋯ |
L(s) = 1 | − 0.447·5-s + (−0.188 − 0.327i)7-s + (0.5 + 0.866i)9-s + (−0.301 + 0.522i)11-s + (0.970 + 0.240i)13-s + (0.363 + 0.630i)17-s + (−0.688 − 1.19i)19-s + (−0.417 + 0.722i)23-s − 0.800·25-s + (0.649 − 1.12i)29-s − 0.718·31-s + (0.0845 + 0.146i)35-s + (−0.739 + 1.28i)37-s + (−0.702 + 1.21i)41-s + (0.762 + 1.32i)43-s + ⋯ |
Λ(s)=(=(1456s/2ΓC(s)L(s)(−0.0128−0.999i)Λ(2−s)
Λ(s)=(=(1456s/2ΓC(s+1/2)L(s)(−0.0128−0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
1456
= 24⋅7⋅13
|
Sign: |
−0.0128−0.999i
|
Analytic conductor: |
11.6262 |
Root analytic conductor: |
3.40972 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1456(113,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1456, ( :1/2), −0.0128−0.999i)
|
Particular Values
L(1) |
≈ |
1.190326568 |
L(21) |
≈ |
1.190326568 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1+(0.5+0.866i)T |
| 13 | 1+(−3.5−0.866i)T |
good | 3 | 1+(−1.5−2.59i)T2 |
| 5 | 1+T+5T2 |
| 11 | 1+(1−1.73i)T+(−5.5−9.52i)T2 |
| 17 | 1+(−1.5−2.59i)T+(−8.5+14.7i)T2 |
| 19 | 1+(3+5.19i)T+(−9.5+16.4i)T2 |
| 23 | 1+(2−3.46i)T+(−11.5−19.9i)T2 |
| 29 | 1+(−3.5+6.06i)T+(−14.5−25.1i)T2 |
| 31 | 1+4T+31T2 |
| 37 | 1+(4.5−7.79i)T+(−18.5−32.0i)T2 |
| 41 | 1+(4.5−7.79i)T+(−20.5−35.5i)T2 |
| 43 | 1+(−5−8.66i)T+(−21.5+37.2i)T2 |
| 47 | 1−2T+47T2 |
| 53 | 1−9T+53T2 |
| 59 | 1+(−7−12.1i)T+(−29.5+51.0i)T2 |
| 61 | 1+(−2.5−4.33i)T+(−30.5+52.8i)T2 |
| 67 | 1+(4−6.92i)T+(−33.5−58.0i)T2 |
| 71 | 1+(−5−8.66i)T+(−35.5+61.4i)T2 |
| 73 | 1+7T+73T2 |
| 79 | 1+2T+79T2 |
| 83 | 1−6T+83T2 |
| 89 | 1+(3−5.19i)T+(−44.5−77.0i)T2 |
| 97 | 1+(1+1.73i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.957092576590929367851818577979, −8.784912819514252520236630864563, −8.063469087569654328525366741188, −7.38559778192496063108922249683, −6.55317747396699365239383293319, −5.59314324856627679174299047848, −4.47295037722606286586029578956, −3.94016288269780118022406740548, −2.61643743439669012360120528646, −1.40151883700983408992146203129,
0.49870685824528081504784984928, 2.01801590895761174109505791876, 3.55648629853055582686055585539, 3.82107033005566794003713054272, 5.28790517537526930567765011410, 6.02302168340223156310534432405, 6.85669009648069150113453610028, 7.74811084883029840071587525329, 8.629262595615513338256919224167, 9.114057566145506150334802496250