L(s) = 1 | − 5-s + (−0.5 − 0.866i)7-s + (1.5 + 2.59i)9-s + (−1 + 1.73i)11-s + (3.5 + 0.866i)13-s + (1.5 + 2.59i)17-s + (−3 − 5.19i)19-s + (−2 + 3.46i)23-s − 4·25-s + (3.5 − 6.06i)29-s − 4·31-s + (0.5 + 0.866i)35-s + (−4.5 + 7.79i)37-s + (−4.5 + 7.79i)41-s + (5 + 8.66i)43-s + ⋯ |
L(s) = 1 | − 0.447·5-s + (−0.188 − 0.327i)7-s + (0.5 + 0.866i)9-s + (−0.301 + 0.522i)11-s + (0.970 + 0.240i)13-s + (0.363 + 0.630i)17-s + (−0.688 − 1.19i)19-s + (−0.417 + 0.722i)23-s − 0.800·25-s + (0.649 − 1.12i)29-s − 0.718·31-s + (0.0845 + 0.146i)35-s + (−0.739 + 1.28i)37-s + (−0.702 + 1.21i)41-s + (0.762 + 1.32i)43-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1456 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0128 - 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1456 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0128 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.190326568\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.190326568\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (0.5 + 0.866i)T \) |
| 13 | \( 1 + (-3.5 - 0.866i)T \) |
good | 3 | \( 1 + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + T + 5T^{2} \) |
| 11 | \( 1 + (1 - 1.73i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-1.5 - 2.59i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (3 + 5.19i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (2 - 3.46i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-3.5 + 6.06i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 4T + 31T^{2} \) |
| 37 | \( 1 + (4.5 - 7.79i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (4.5 - 7.79i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-5 - 8.66i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 2T + 47T^{2} \) |
| 53 | \( 1 - 9T + 53T^{2} \) |
| 59 | \( 1 + (-7 - 12.1i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-2.5 - 4.33i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (4 - 6.92i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-5 - 8.66i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 7T + 73T^{2} \) |
| 79 | \( 1 + 2T + 79T^{2} \) |
| 83 | \( 1 - 6T + 83T^{2} \) |
| 89 | \( 1 + (3 - 5.19i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (1 + 1.73i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.957092576590929367851818577979, −8.784912819514252520236630864563, −8.063469087569654328525366741188, −7.38559778192496063108922249683, −6.55317747396699365239383293319, −5.59314324856627679174299047848, −4.47295037722606286586029578956, −3.94016288269780118022406740548, −2.61643743439669012360120528646, −1.40151883700983408992146203129,
0.49870685824528081504784984928, 2.01801590895761174109505791876, 3.55648629853055582686055585539, 3.82107033005566794003713054272, 5.28790517537526930567765011410, 6.02302168340223156310534432405, 6.85669009648069150113453610028, 7.74811084883029840071587525329, 8.629262595615513338256919224167, 9.114057566145506150334802496250