L(s) = 1 | − 1.41i·2-s − 2.00·4-s + 3.04i·5-s + 8.22·7-s + 2.82i·8-s + 4.30·10-s + 6.55i·11-s − 18.5·13-s − 11.6i·14-s + 4.00·16-s − 13.1i·17-s − 34.8·19-s − 6.08i·20-s + 9.26·22-s + 3.31i·23-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 0.500·4-s + 0.608i·5-s + 1.17·7-s + 0.353i·8-s + 0.430·10-s + 0.595i·11-s − 1.42·13-s − 0.831i·14-s + 0.250·16-s − 0.776i·17-s − 1.83·19-s − 0.304i·20-s + 0.421·22-s + 0.144i·23-s + ⋯ |
Λ(s)=(=(1458s/2ΓC(s)L(s)−Λ(3−s)
Λ(s)=(=(1458s/2ΓC(s+1)L(s)−Λ(1−s)
Degree: |
2 |
Conductor: |
1458
= 2⋅36
|
Sign: |
−1
|
Analytic conductor: |
39.7276 |
Root analytic conductor: |
6.30298 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1458(1457,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1458, ( :1), −1)
|
Particular Values
L(23) |
≈ |
0.4321758943 |
L(21) |
≈ |
0.4321758943 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+1.41iT |
| 3 | 1 |
good | 5 | 1−3.04iT−25T2 |
| 7 | 1−8.22T+49T2 |
| 11 | 1−6.55iT−121T2 |
| 13 | 1+18.5T+169T2 |
| 17 | 1+13.1iT−289T2 |
| 19 | 1+34.8T+361T2 |
| 23 | 1−3.31iT−529T2 |
| 29 | 1−28.4iT−841T2 |
| 31 | 1+13.8T+961T2 |
| 37 | 1−6.66T+1.36e3T2 |
| 41 | 1+56.9iT−1.68e3T2 |
| 43 | 1+32.7T+1.84e3T2 |
| 47 | 1+53.6iT−2.20e3T2 |
| 53 | 1+98.5iT−2.80e3T2 |
| 59 | 1+102.iT−3.48e3T2 |
| 61 | 1+7.18T+3.72e3T2 |
| 67 | 1−30.0T+4.48e3T2 |
| 71 | 1−9.77iT−5.04e3T2 |
| 73 | 1+129.T+5.32e3T2 |
| 79 | 1−102.T+6.24e3T2 |
| 83 | 1+108.iT−6.88e3T2 |
| 89 | 1−23.2iT−7.92e3T2 |
| 97 | 1+51.2T+9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.989304185714563869618022179404, −8.229510572182436498316999790566, −7.30136736667982916161940021565, −6.69143770122737018953986153416, −5.12945141888869012262599643407, −4.81914291119925388077321261090, −3.67776485987459971582688250450, −2.43101580577122059586867138338, −1.85386503187915005560199026917, −0.11649204139320019006131753565,
1.36414661276739584507652065634, 2.60845675706147207467311722580, 4.31264985553288243098981225822, 4.61898482845015389362614061402, 5.62542956864327965995487684870, 6.41063733203571713624297772311, 7.46880362443392254845553860167, 8.189772059903430396137632117422, 8.632002833616108250148537362191, 9.518092753668421004187503305285