L(s) = 1 | − 1.41i·2-s − 2.00·4-s + 7.93i·5-s + 0.453·7-s + 2.82i·8-s + 11.2·10-s − 14.1i·11-s − 12.8·13-s − 0.641i·14-s + 4.00·16-s + 32.9i·17-s − 0.405·19-s − 15.8i·20-s − 19.9·22-s − 14.4i·23-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 0.500·4-s + 1.58i·5-s + 0.0648·7-s + 0.353i·8-s + 1.12·10-s − 1.28i·11-s − 0.984·13-s − 0.0458i·14-s + 0.250·16-s + 1.93i·17-s − 0.0213·19-s − 0.793i·20-s − 0.906·22-s − 0.629i·23-s + ⋯ |
Λ(s)=(=(1458s/2ΓC(s)L(s)−Λ(3−s)
Λ(s)=(=(1458s/2ΓC(s+1)L(s)−Λ(1−s)
Degree: |
2 |
Conductor: |
1458
= 2⋅36
|
Sign: |
−1
|
Analytic conductor: |
39.7276 |
Root analytic conductor: |
6.30298 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1458(1457,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1458, ( :1), −1)
|
Particular Values
L(23) |
≈ |
0.006183335234 |
L(21) |
≈ |
0.006183335234 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+1.41iT |
| 3 | 1 |
good | 5 | 1−7.93iT−25T2 |
| 7 | 1−0.453T+49T2 |
| 11 | 1+14.1iT−121T2 |
| 13 | 1+12.8T+169T2 |
| 17 | 1−32.9iT−289T2 |
| 19 | 1+0.405T+361T2 |
| 23 | 1+14.4iT−529T2 |
| 29 | 1−26.2iT−841T2 |
| 31 | 1−24.9T+961T2 |
| 37 | 1+7.68T+1.36e3T2 |
| 41 | 1+24.7iT−1.68e3T2 |
| 43 | 1−17.9T+1.84e3T2 |
| 47 | 1+47.4iT−2.20e3T2 |
| 53 | 1−0.261iT−2.80e3T2 |
| 59 | 1−55.1iT−3.48e3T2 |
| 61 | 1+104.T+3.72e3T2 |
| 67 | 1+64.6T+4.48e3T2 |
| 71 | 1+109.iT−5.04e3T2 |
| 73 | 1+62.9T+5.32e3T2 |
| 79 | 1+19.2T+6.24e3T2 |
| 83 | 1+57.1iT−6.88e3T2 |
| 89 | 1+103.iT−7.92e3T2 |
| 97 | 1−56.2T+9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.13521854203673767999711243284, −8.952584309401744611188088538099, −8.220539540347541771949969042671, −7.32657481064012580910428770213, −6.38475128426038088831270835640, −5.76817829549146263386534900241, −4.44095854577452358297321344436, −3.40822052990353947101598036185, −2.85257732467396786020363462281, −1.74007399070932027535410662092,
0.00177187133409916509943273341, 1.24823129668362277160322138544, 2.62230333367050921800736423188, 4.30899610481086196630257721176, 4.82599089698423367029838233124, 5.33208883630797156036638100533, 6.54322023988547244027904873800, 7.53902427665093741688879802029, 7.888627206351551472182985668332, 9.069616487539839316925166748654