L(s) = 1 | + 2.10i·2-s + (−1.13 + 1.30i)3-s − 2.41·4-s − 1.60·5-s + (−2.74 − 2.38i)6-s − 0.870i·8-s + (−0.414 − 2.97i)9-s − 3.37i·10-s + 2.97i·11-s + (2.74 − 3.15i)12-s + 0.317i·13-s + (1.82 − 2.10i)15-s − 2.99·16-s + 3.88·17-s + (6.24 − 0.870i)18-s + 5.22i·19-s + ⋯ |
L(s) = 1 | + 1.48i·2-s + (−0.656 + 0.754i)3-s − 1.20·4-s − 0.719·5-s + (−1.12 − 0.975i)6-s − 0.307i·8-s + (−0.138 − 0.990i)9-s − 1.06i·10-s + 0.895i·11-s + (0.792 − 0.910i)12-s + 0.0879i·13-s + (0.472 − 0.542i)15-s − 0.749·16-s + 0.941·17-s + (1.47 − 0.205i)18-s + 1.19i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.907 + 0.419i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.907 + 0.419i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.148401 - 0.674424i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.148401 - 0.674424i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (1.13 - 1.30i)T \) |
| 7 | \( 1 \) |
good | 2 | \( 1 - 2.10iT - 2T^{2} \) |
| 5 | \( 1 + 1.60T + 5T^{2} \) |
| 11 | \( 1 - 2.97iT - 11T^{2} \) |
| 13 | \( 1 - 0.317iT - 13T^{2} \) |
| 17 | \( 1 - 3.88T + 17T^{2} \) |
| 19 | \( 1 - 5.22iT - 19T^{2} \) |
| 23 | \( 1 + 1.23iT - 23T^{2} \) |
| 29 | \( 1 - 4.71iT - 29T^{2} \) |
| 31 | \( 1 - 2.61iT - 31T^{2} \) |
| 37 | \( 1 - 9.07T + 37T^{2} \) |
| 41 | \( 1 + 6.15T + 41T^{2} \) |
| 43 | \( 1 - 2T + 43T^{2} \) |
| 47 | \( 1 - 13.2T + 47T^{2} \) |
| 53 | \( 1 + 1.74iT - 53T^{2} \) |
| 59 | \( 1 - 6.43T + 59T^{2} \) |
| 61 | \( 1 + 7.70iT - 61T^{2} \) |
| 67 | \( 1 - 2.48T + 67T^{2} \) |
| 71 | \( 1 + 4.71iT - 71T^{2} \) |
| 73 | \( 1 + 10.3iT - 73T^{2} \) |
| 79 | \( 1 + 0.828T + 79T^{2} \) |
| 83 | \( 1 - 3.60T + 83T^{2} \) |
| 89 | \( 1 + 10.3T + 89T^{2} \) |
| 97 | \( 1 + 7.25iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.19120089691844708489097101548, −12.52500651003821949549821875671, −11.71578978331332446008011809252, −10.44145232429624283406771439238, −9.381365971137434766553906444379, −8.135361291874329589043016370562, −7.20882592285636863191267396531, −6.05191121758066991199647938355, −5.02973151913301200869107537277, −3.90433293438228257629142751242,
0.77338498070463203181121372422, 2.67391096067655859329598825529, 4.14626243564433909347861378325, 5.72756207853992555131417474541, 7.22124737852037633303357433759, 8.368728828773948765938371544100, 9.773620194693128426659457887197, 10.95123487317507977165094015691, 11.50755661072854572913973266899, 12.16909210526343022814400333145