L(s) = 1 | + 2.10i·2-s + (−1.13 + 1.30i)3-s − 2.41·4-s − 1.60·5-s + (−2.74 − 2.38i)6-s − 0.870i·8-s + (−0.414 − 2.97i)9-s − 3.37i·10-s + 2.97i·11-s + (2.74 − 3.15i)12-s + 0.317i·13-s + (1.82 − 2.10i)15-s − 2.99·16-s + 3.88·17-s + (6.24 − 0.870i)18-s + 5.22i·19-s + ⋯ |
L(s) = 1 | + 1.48i·2-s + (−0.656 + 0.754i)3-s − 1.20·4-s − 0.719·5-s + (−1.12 − 0.975i)6-s − 0.307i·8-s + (−0.138 − 0.990i)9-s − 1.06i·10-s + 0.895i·11-s + (0.792 − 0.910i)12-s + 0.0879i·13-s + (0.472 − 0.542i)15-s − 0.749·16-s + 0.941·17-s + (1.47 − 0.205i)18-s + 1.19i·19-s + ⋯ |
Λ(s)=(=(147s/2ΓC(s)L(s)(−0.907+0.419i)Λ(2−s)
Λ(s)=(=(147s/2ΓC(s+1/2)L(s)(−0.907+0.419i)Λ(1−s)
Degree: |
2 |
Conductor: |
147
= 3⋅72
|
Sign: |
−0.907+0.419i
|
Analytic conductor: |
1.17380 |
Root analytic conductor: |
1.08342 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ147(146,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 147, ( :1/2), −0.907+0.419i)
|
Particular Values
L(1) |
≈ |
0.148401−0.674424i |
L(21) |
≈ |
0.148401−0.674424i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(1.13−1.30i)T |
| 7 | 1 |
good | 2 | 1−2.10iT−2T2 |
| 5 | 1+1.60T+5T2 |
| 11 | 1−2.97iT−11T2 |
| 13 | 1−0.317iT−13T2 |
| 17 | 1−3.88T+17T2 |
| 19 | 1−5.22iT−19T2 |
| 23 | 1+1.23iT−23T2 |
| 29 | 1−4.71iT−29T2 |
| 31 | 1−2.61iT−31T2 |
| 37 | 1−9.07T+37T2 |
| 41 | 1+6.15T+41T2 |
| 43 | 1−2T+43T2 |
| 47 | 1−13.2T+47T2 |
| 53 | 1+1.74iT−53T2 |
| 59 | 1−6.43T+59T2 |
| 61 | 1+7.70iT−61T2 |
| 67 | 1−2.48T+67T2 |
| 71 | 1+4.71iT−71T2 |
| 73 | 1+10.3iT−73T2 |
| 79 | 1+0.828T+79T2 |
| 83 | 1−3.60T+83T2 |
| 89 | 1+10.3T+89T2 |
| 97 | 1+7.25iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.19120089691844708489097101548, −12.52500651003821949549821875671, −11.71578978331332446008011809252, −10.44145232429624283406771439238, −9.381365971137434766553906444379, −8.135361291874329589043016370562, −7.20882592285636863191267396531, −6.05191121758066991199647938355, −5.02973151913301200869107537277, −3.90433293438228257629142751242,
0.77338498070463203181121372422, 2.67391096067655859329598825529, 4.14626243564433909347861378325, 5.72756207853992555131417474541, 7.22124737852037633303357433759, 8.368728828773948765938371544100, 9.773620194693128426659457887197, 10.95123487317507977165094015691, 11.50755661072854572913973266899, 12.16909210526343022814400333145