L(s) = 1 | + (−0.339 − 0.339i)3-s + (1.46 − 1.46i)5-s − 2.63i·7-s − 2.76i·9-s + (2.99 − 2.99i)11-s + (−0.749 − 0.749i)13-s − 0.998·15-s − 3.64·17-s + (−1.76 − 1.76i)19-s + (−0.893 + 0.893i)21-s + i·23-s + 0.682i·25-s + (−1.95 + 1.95i)27-s + (0.0790 + 0.0790i)29-s + 2.07·31-s + ⋯ |
L(s) = 1 | + (−0.196 − 0.196i)3-s + (0.657 − 0.657i)5-s − 0.994i·7-s − 0.923i·9-s + (0.901 − 0.901i)11-s + (−0.207 − 0.207i)13-s − 0.257·15-s − 0.885·17-s + (−0.405 − 0.405i)19-s + (−0.195 + 0.195i)21-s + 0.208i·23-s + 0.136i·25-s + (−0.377 + 0.377i)27-s + (0.0146 + 0.0146i)29-s + 0.372·31-s + ⋯ |
Λ(s)=(=(1472s/2ΓC(s)L(s)(−0.694+0.719i)Λ(2−s)
Λ(s)=(=(1472s/2ΓC(s+1/2)L(s)(−0.694+0.719i)Λ(1−s)
Degree: |
2 |
Conductor: |
1472
= 26⋅23
|
Sign: |
−0.694+0.719i
|
Analytic conductor: |
11.7539 |
Root analytic conductor: |
3.42840 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1472(1105,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1472, ( :1/2), −0.694+0.719i)
|
Particular Values
L(1) |
≈ |
1.531484730 |
L(21) |
≈ |
1.531484730 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 23 | 1−iT |
good | 3 | 1+(0.339+0.339i)T+3iT2 |
| 5 | 1+(−1.46+1.46i)T−5iT2 |
| 7 | 1+2.63iT−7T2 |
| 11 | 1+(−2.99+2.99i)T−11iT2 |
| 13 | 1+(0.749+0.749i)T+13iT2 |
| 17 | 1+3.64T+17T2 |
| 19 | 1+(1.76+1.76i)T+19iT2 |
| 29 | 1+(−0.0790−0.0790i)T+29iT2 |
| 31 | 1−2.07T+31T2 |
| 37 | 1+(3.64−3.64i)T−37iT2 |
| 41 | 1−1.90iT−41T2 |
| 43 | 1+(6.84−6.84i)T−43iT2 |
| 47 | 1−8.55T+47T2 |
| 53 | 1+(6.62−6.62i)T−53iT2 |
| 59 | 1+(−5.45+5.45i)T−59iT2 |
| 61 | 1+(−2.13−2.13i)T+61iT2 |
| 67 | 1+(3.51+3.51i)T+67iT2 |
| 71 | 1−1.61iT−71T2 |
| 73 | 1+14.4iT−73T2 |
| 79 | 1−12.5T+79T2 |
| 83 | 1+(1.26+1.26i)T+83iT2 |
| 89 | 1+12.3iT−89T2 |
| 97 | 1−7.54T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.136048999898600361553651747593, −8.647850105369341503831675214073, −7.50664723562352460004876338054, −6.56152091720335596977640825455, −6.14981092234334337336735138871, −5.00248054576824184220464406610, −4.11158516940496739591226015037, −3.18166786802066162672721783911, −1.57388281266249956243126653540, −0.62348149970286958057789895013,
2.00972565236967846728183443209, 2.39066664833101758979989193297, 3.93138770126395658925667866546, 4.87252417226032992611450445880, 5.71185550177479787483435901757, 6.55182171454828723040564485163, 7.17726576265476309452070821562, 8.373995017107906688388914553260, 9.034749965875839601890038462067, 9.901006615499911310939795627857