L(s) = 1 | + (1.70 + 1.70i)3-s + (−2.61 + 2.61i)5-s − 1.66i·7-s + 2.81i·9-s + (−3.35 + 3.35i)11-s + (1.50 + 1.50i)13-s − 8.91·15-s − 0.812·17-s + (3.81 + 3.81i)19-s + (2.83 − 2.83i)21-s + i·23-s − 8.64i·25-s + (0.307 − 0.307i)27-s + (−7.12 − 7.12i)29-s − 10.7·31-s + ⋯ |
L(s) = 1 | + (0.984 + 0.984i)3-s + (−1.16 + 1.16i)5-s − 0.628i·7-s + 0.939i·9-s + (−1.01 + 1.01i)11-s + (0.418 + 0.418i)13-s − 2.30·15-s − 0.196·17-s + (0.876 + 0.876i)19-s + (0.618 − 0.618i)21-s + 0.208i·23-s − 1.72i·25-s + (0.0591 − 0.0591i)27-s + (−1.32 − 1.32i)29-s − 1.92·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.972 + 0.233i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.972 + 0.233i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.056985164\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.056985164\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 23 | \( 1 - iT \) |
good | 3 | \( 1 + (-1.70 - 1.70i)T + 3iT^{2} \) |
| 5 | \( 1 + (2.61 - 2.61i)T - 5iT^{2} \) |
| 7 | \( 1 + 1.66iT - 7T^{2} \) |
| 11 | \( 1 + (3.35 - 3.35i)T - 11iT^{2} \) |
| 13 | \( 1 + (-1.50 - 1.50i)T + 13iT^{2} \) |
| 17 | \( 1 + 0.812T + 17T^{2} \) |
| 19 | \( 1 + (-3.81 - 3.81i)T + 19iT^{2} \) |
| 29 | \( 1 + (7.12 + 7.12i)T + 29iT^{2} \) |
| 31 | \( 1 + 10.7T + 31T^{2} \) |
| 37 | \( 1 + (-3.80 + 3.80i)T - 37iT^{2} \) |
| 41 | \( 1 + 0.765iT - 41T^{2} \) |
| 43 | \( 1 + (3.75 - 3.75i)T - 43iT^{2} \) |
| 47 | \( 1 + 2.18T + 47T^{2} \) |
| 53 | \( 1 + (1.48 - 1.48i)T - 53iT^{2} \) |
| 59 | \( 1 + (9.46 - 9.46i)T - 59iT^{2} \) |
| 61 | \( 1 + (-0.442 - 0.442i)T + 61iT^{2} \) |
| 67 | \( 1 + (-7.97 - 7.97i)T + 67iT^{2} \) |
| 71 | \( 1 - 2.88iT - 71T^{2} \) |
| 73 | \( 1 + 7.28iT - 73T^{2} \) |
| 79 | \( 1 + 1.36T + 79T^{2} \) |
| 83 | \( 1 + (6.09 + 6.09i)T + 83iT^{2} \) |
| 89 | \( 1 - 4.98iT - 89T^{2} \) |
| 97 | \( 1 + 7.46T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.891378788878660018433069377975, −9.324936086670422878121236538456, −8.170172085805824562404391001484, −7.53277798681361663611466804839, −7.17225774410390131614827715130, −5.77314237660522884851775501797, −4.45248527815574227023222262254, −3.86160231954417103554387337780, −3.26901833931389464762193692457, −2.19705680088730852899014877330,
0.35943461661528111822623406829, 1.63936963922318427194120845881, 2.96166038542315889153484866352, 3.59322272641916278295060255289, 5.01705453403118562511552389832, 5.58622615137232815089757324156, 7.00893884023223518389403778888, 7.71521767945720023507613177080, 8.270949548885206774934914665835, 8.794157732099754003060855946518