L(s) = 1 | + (1.70 + 1.70i)3-s + (−2.61 + 2.61i)5-s − 1.66i·7-s + 2.81i·9-s + (−3.35 + 3.35i)11-s + (1.50 + 1.50i)13-s − 8.91·15-s − 0.812·17-s + (3.81 + 3.81i)19-s + (2.83 − 2.83i)21-s + i·23-s − 8.64i·25-s + (0.307 − 0.307i)27-s + (−7.12 − 7.12i)29-s − 10.7·31-s + ⋯ |
L(s) = 1 | + (0.984 + 0.984i)3-s + (−1.16 + 1.16i)5-s − 0.628i·7-s + 0.939i·9-s + (−1.01 + 1.01i)11-s + (0.418 + 0.418i)13-s − 2.30·15-s − 0.196·17-s + (0.876 + 0.876i)19-s + (0.618 − 0.618i)21-s + 0.208i·23-s − 1.72i·25-s + (0.0591 − 0.0591i)27-s + (−1.32 − 1.32i)29-s − 1.92·31-s + ⋯ |
Λ(s)=(=(1472s/2ΓC(s)L(s)(−0.972+0.233i)Λ(2−s)
Λ(s)=(=(1472s/2ΓC(s+1/2)L(s)(−0.972+0.233i)Λ(1−s)
Degree: |
2 |
Conductor: |
1472
= 26⋅23
|
Sign: |
−0.972+0.233i
|
Analytic conductor: |
11.7539 |
Root analytic conductor: |
3.42840 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1472(1105,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1472, ( :1/2), −0.972+0.233i)
|
Particular Values
L(1) |
≈ |
1.056985164 |
L(21) |
≈ |
1.056985164 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 23 | 1−iT |
good | 3 | 1+(−1.70−1.70i)T+3iT2 |
| 5 | 1+(2.61−2.61i)T−5iT2 |
| 7 | 1+1.66iT−7T2 |
| 11 | 1+(3.35−3.35i)T−11iT2 |
| 13 | 1+(−1.50−1.50i)T+13iT2 |
| 17 | 1+0.812T+17T2 |
| 19 | 1+(−3.81−3.81i)T+19iT2 |
| 29 | 1+(7.12+7.12i)T+29iT2 |
| 31 | 1+10.7T+31T2 |
| 37 | 1+(−3.80+3.80i)T−37iT2 |
| 41 | 1+0.765iT−41T2 |
| 43 | 1+(3.75−3.75i)T−43iT2 |
| 47 | 1+2.18T+47T2 |
| 53 | 1+(1.48−1.48i)T−53iT2 |
| 59 | 1+(9.46−9.46i)T−59iT2 |
| 61 | 1+(−0.442−0.442i)T+61iT2 |
| 67 | 1+(−7.97−7.97i)T+67iT2 |
| 71 | 1−2.88iT−71T2 |
| 73 | 1+7.28iT−73T2 |
| 79 | 1+1.36T+79T2 |
| 83 | 1+(6.09+6.09i)T+83iT2 |
| 89 | 1−4.98iT−89T2 |
| 97 | 1+7.46T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.891378788878660018433069377975, −9.324936086670422878121236538456, −8.170172085805824562404391001484, −7.53277798681361663611466804839, −7.17225774410390131614827715130, −5.77314237660522884851775501797, −4.45248527815574227023222262254, −3.86160231954417103554387337780, −3.26901833931389464762193692457, −2.19705680088730852899014877330,
0.35943461661528111822623406829, 1.63936963922318427194120845881, 2.96166038542315889153484866352, 3.59322272641916278295060255289, 5.01705453403118562511552389832, 5.58622615137232815089757324156, 7.00893884023223518389403778888, 7.71521767945720023507613177080, 8.270949548885206774934914665835, 8.794157732099754003060855946518