Properties

Label 2-1472-1.1-c3-0-110
Degree $2$
Conductor $1472$
Sign $-1$
Analytic cond. $86.8508$
Root an. cond. $9.31937$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.90·3-s + 18.0·5-s − 0.923·7-s − 23.3·9-s + 49.9·11-s − 78.4·13-s − 34.2·15-s + 81.5·17-s − 103.·19-s + 1.75·21-s − 23·23-s + 200.·25-s + 95.7·27-s − 153.·29-s + 59.6·31-s − 95.0·33-s − 16.6·35-s − 138.·37-s + 149.·39-s + 28.5·41-s − 359.·43-s − 421.·45-s − 554.·47-s − 342.·49-s − 155.·51-s − 362.·53-s + 901.·55-s + ⋯
L(s)  = 1  − 0.365·3-s + 1.61·5-s − 0.0498·7-s − 0.866·9-s + 1.37·11-s − 1.67·13-s − 0.590·15-s + 1.16·17-s − 1.25·19-s + 0.0182·21-s − 0.208·23-s + 1.60·25-s + 0.682·27-s − 0.984·29-s + 0.345·31-s − 0.501·33-s − 0.0804·35-s − 0.616·37-s + 0.612·39-s + 0.108·41-s − 1.27·43-s − 1.39·45-s − 1.72·47-s − 0.997·49-s − 0.425·51-s − 0.939·53-s + 2.20·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1472\)    =    \(2^{6} \cdot 23\)
Sign: $-1$
Analytic conductor: \(86.8508\)
Root analytic conductor: \(9.31937\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1472,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
23 \( 1 + 23T \)
good3 \( 1 + 1.90T + 27T^{2} \)
5 \( 1 - 18.0T + 125T^{2} \)
7 \( 1 + 0.923T + 343T^{2} \)
11 \( 1 - 49.9T + 1.33e3T^{2} \)
13 \( 1 + 78.4T + 2.19e3T^{2} \)
17 \( 1 - 81.5T + 4.91e3T^{2} \)
19 \( 1 + 103.T + 6.85e3T^{2} \)
29 \( 1 + 153.T + 2.43e4T^{2} \)
31 \( 1 - 59.6T + 2.97e4T^{2} \)
37 \( 1 + 138.T + 5.06e4T^{2} \)
41 \( 1 - 28.5T + 6.89e4T^{2} \)
43 \( 1 + 359.T + 7.95e4T^{2} \)
47 \( 1 + 554.T + 1.03e5T^{2} \)
53 \( 1 + 362.T + 1.48e5T^{2} \)
59 \( 1 - 736.T + 2.05e5T^{2} \)
61 \( 1 + 643.T + 2.26e5T^{2} \)
67 \( 1 - 503.T + 3.00e5T^{2} \)
71 \( 1 - 1.02e3T + 3.57e5T^{2} \)
73 \( 1 + 760.T + 3.89e5T^{2} \)
79 \( 1 - 674.T + 4.93e5T^{2} \)
83 \( 1 + 538.T + 5.71e5T^{2} \)
89 \( 1 - 248.T + 7.04e5T^{2} \)
97 \( 1 - 1.08e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.936430820073506236060026919231, −8.011283121166177593240825140481, −6.73975840882208789785603342441, −6.32537844047674372901094529973, −5.44130859703355815378954090392, −4.83475432525661149196394833623, −3.42051288955039291976496039839, −2.32103249233261865797741625833, −1.50400768369469858657927276193, 0, 1.50400768369469858657927276193, 2.32103249233261865797741625833, 3.42051288955039291976496039839, 4.83475432525661149196394833623, 5.44130859703355815378954090392, 6.32537844047674372901094529973, 6.73975840882208789785603342441, 8.011283121166177593240825140481, 8.936430820073506236060026919231

Graph of the $Z$-function along the critical line