L(s) = 1 | − 3-s − 16·5-s + 18·7-s − 31·9-s − 40·11-s + 95·13-s + 16·15-s − 42·17-s − 26·19-s − 18·21-s − 69·23-s + 157·25-s − 14·27-s + 181·29-s + 705·31-s + 40·33-s − 288·35-s + 80·37-s − 95·39-s + 281·41-s − 248·43-s + 496·45-s + 517·47-s − 369·49-s + 42·51-s + 190·53-s + 640·55-s + ⋯ |
L(s) = 1 | − 0.192·3-s − 1.43·5-s + 0.971·7-s − 1.14·9-s − 1.09·11-s + 2.02·13-s + 0.275·15-s − 0.599·17-s − 0.313·19-s − 0.187·21-s − 0.625·23-s + 1.25·25-s − 0.0997·27-s + 1.15·29-s + 4.08·31-s + 0.211·33-s − 1.39·35-s + 0.355·37-s − 0.390·39-s + 1.07·41-s − 0.879·43-s + 1.64·45-s + 1.60·47-s − 1.07·49-s + 0.115·51-s + 0.492·53-s + 1.56·55-s + ⋯ |
Λ(s)=(=((218⋅233)s/2ΓC(s)3L(s)Λ(4−s)
Λ(s)=(=((218⋅233)s/2ΓC(s+3/2)3L(s)Λ(1−s)
Degree: |
6 |
Conductor: |
218⋅233
|
Sign: |
1
|
Analytic conductor: |
655121. |
Root analytic conductor: |
9.31937 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(6, 218⋅233, ( :3/2,3/2,3/2), 1)
|
Particular Values
L(2) |
≈ |
1.104628610 |
L(21) |
≈ |
1.104628610 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 23 | C1 | (1+pT)3 |
good | 3 | S4×C2 | 1+T+32T2+77T3+32p3T4+p6T5+p9T6 |
| 5 | S4×C2 | 1+16T+99T2−232T3+99p3T4+16p6T5+p9T6 |
| 7 | S4×C2 | 1−18T+99pT2−10964T3+99p4T4−18p6T5+p9T6 |
| 11 | S4×C2 | 1+40T+1725T2+40424T3+1725p3T4+40p6T5+p9T6 |
| 13 | S4×C2 | 1−95T+7978T2−385251T3+7978p3T4−95p6T5+p9T6 |
| 17 | S4×C2 | 1+42T+12523T2+356236T3+12523p3T4+42p6T5+p9T6 |
| 19 | S4×C2 | 1+26T+1325T2−787148T3+1325p3T4+26p6T5+p9T6 |
| 29 | S4×C2 | 1−181T+32658T2−1717337T3+32658p3T4−181p6T5+p9T6 |
| 31 | S4×C2 | 1−705T+244660T2−52242909T3+244660p3T4−705p6T5+p9T6 |
| 37 | S4×C2 | 1−80T+28931T2+11253064T3+28931p3T4−80p6T5+p9T6 |
| 41 | S4×C2 | 1−281T+3494pT2−41307101T3+3494p4T4−281p6T5+p9T6 |
| 43 | S4×C2 | 1+248T+152377T2+36661968T3+152377p3T4+248p6T5+p9T6 |
| 47 | S4×C2 | 1−11pT+288700T2−106705481T3+288700p3T4−11p7T5+p9T6 |
| 53 | S4×C2 | 1−190T+285155T2−38423188T3+285155p3T4−190p6T5+p9T6 |
| 59 | S4×C2 | 1+996T+829737T2+392514584T3+829737p3T4+996p6T5+p9T6 |
| 61 | S4×C2 | 1−1214T+1069787T2−564015572T3+1069787p3T4−1214p6T5+p9T6 |
| 67 | S4×C2 | 1−776T+970373T2−452560232T3+970373p3T4−776p6T5+p9T6 |
| 71 | S4×C2 | 1−229T+917452T2−164982785T3+917452p3T4−229p6T5+p9T6 |
| 73 | S4×C2 | 1+333T+1019422T2+267801129T3+1019422p3T4+333p6T5+p9T6 |
| 79 | S4×C2 | 1+26T+1046041T2+20149636T3+1046041p3T4+26p6T5+p9T6 |
| 83 | S4×C2 | 1−474T+1539841T2−550884324T3+1539841p3T4−474p6T5+p9T6 |
| 89 | S4×C2 | 1+1320T+1590475T2+1206020752T3+1590475p3T4+1320p6T5+p9T6 |
| 97 | S4×C2 | 1−2386T+3755947T2−3905686572T3+3755947p3T4−2386p6T5+p9T6 |
show more | | |
show less | | |
L(s)=p∏ j=1∏6(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.237425085007902047080101327433, −7.82199615019895581303515034606, −7.71955711647440220419497119394, −7.49958533632258940379596541152, −6.84745854138760102590960795811, −6.68529149947993891720702869995, −6.38515852651787941929973385490, −6.16466567356160506796398532773, −5.82203570554423947594225853644, −5.76438349573267361093507428935, −4.99913652983588003706459785330, −4.88289404396025635693092396452, −4.81091255969224530019384654138, −4.31959279849179437354974343203, −4.06957043727831851358021898624, −3.77778994704447044352732442110, −3.40605705360710064514985473825, −2.99684985243805051448208769333, −2.74641715741112312058985358223, −2.31350265054155103460987206531, −2.16880594163503479709839896277, −1.27723077123145478346334681322, −0.988955090345996178126488369965, −0.798678382865003062382215297000, −0.18693472396675260978476269932,
0.18693472396675260978476269932, 0.798678382865003062382215297000, 0.988955090345996178126488369965, 1.27723077123145478346334681322, 2.16880594163503479709839896277, 2.31350265054155103460987206531, 2.74641715741112312058985358223, 2.99684985243805051448208769333, 3.40605705360710064514985473825, 3.77778994704447044352732442110, 4.06957043727831851358021898624, 4.31959279849179437354974343203, 4.81091255969224530019384654138, 4.88289404396025635693092396452, 4.99913652983588003706459785330, 5.76438349573267361093507428935, 5.82203570554423947594225853644, 6.16466567356160506796398532773, 6.38515852651787941929973385490, 6.68529149947993891720702869995, 6.84745854138760102590960795811, 7.49958533632258940379596541152, 7.71955711647440220419497119394, 7.82199615019895581303515034606, 8.237425085007902047080101327433