L(s) = 1 | − 7.72·3-s − 18.6·5-s + 28.1·7-s + 32.7·9-s + 44.4·11-s + 67.2·13-s + 143.·15-s − 21.2·17-s + 151.·19-s − 217.·21-s − 23·23-s + 221.·25-s − 44.0·27-s + 164.·29-s + 120.·31-s − 343.·33-s − 524.·35-s + 188.·37-s − 519.·39-s − 59.5·41-s − 432.·43-s − 608.·45-s + 555.·47-s + 451.·49-s + 164.·51-s + 106.·53-s − 827.·55-s + ⋯ |
L(s) = 1 | − 1.48·3-s − 1.66·5-s + 1.52·7-s + 1.21·9-s + 1.21·11-s + 1.43·13-s + 2.47·15-s − 0.303·17-s + 1.82·19-s − 2.26·21-s − 0.208·23-s + 1.77·25-s − 0.314·27-s + 1.05·29-s + 0.700·31-s − 1.81·33-s − 2.53·35-s + 0.839·37-s − 2.13·39-s − 0.226·41-s − 1.53·43-s − 2.01·45-s + 1.72·47-s + 1.31·49-s + 0.450·51-s + 0.276·53-s − 2.02·55-s + ⋯ |
Λ(s)=(=(1472s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(1472s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
1.476178219 |
L(21) |
≈ |
1.476178219 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 23 | 1+23T |
good | 3 | 1+7.72T+27T2 |
| 5 | 1+18.6T+125T2 |
| 7 | 1−28.1T+343T2 |
| 11 | 1−44.4T+1.33e3T2 |
| 13 | 1−67.2T+2.19e3T2 |
| 17 | 1+21.2T+4.91e3T2 |
| 19 | 1−151.T+6.85e3T2 |
| 29 | 1−164.T+2.43e4T2 |
| 31 | 1−120.T+2.97e4T2 |
| 37 | 1−188.T+5.06e4T2 |
| 41 | 1+59.5T+6.89e4T2 |
| 43 | 1+432.T+7.95e4T2 |
| 47 | 1−555.T+1.03e5T2 |
| 53 | 1−106.T+1.48e5T2 |
| 59 | 1+571.T+2.05e5T2 |
| 61 | 1−37.4T+2.26e5T2 |
| 67 | 1+94.5T+3.00e5T2 |
| 71 | 1+6.85T+3.57e5T2 |
| 73 | 1−194.T+3.89e5T2 |
| 79 | 1+12.6T+4.93e5T2 |
| 83 | 1+194.T+5.71e5T2 |
| 89 | 1+682.T+7.04e5T2 |
| 97 | 1−1.12e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.908716730556660381906235141878, −8.237425085007902047080101327433, −7.49958533632258940379596541152, −6.68529149947993891720702869995, −5.82203570554423947594225853644, −4.81091255969224530019384654138, −4.31959279849179437354974343203, −3.40605705360710064514985473825, −1.27723077123145478346334681322, −0.798678382865003062382215297000,
0.798678382865003062382215297000, 1.27723077123145478346334681322, 3.40605705360710064514985473825, 4.31959279849179437354974343203, 4.81091255969224530019384654138, 5.82203570554423947594225853644, 6.68529149947993891720702869995, 7.49958533632258940379596541152, 8.237425085007902047080101327433, 8.908716730556660381906235141878