L(s) = 1 | + (0.224 − 0.224i)2-s + (−1.22 − 1.22i)3-s + 3.89i·4-s + (−4.67 − 1.77i)5-s − 0.550·6-s + (3.44 − 3.44i)7-s + (1.77 + 1.77i)8-s + 2.99i·9-s + (−1.44 + 0.651i)10-s + 11.3·11-s + (4.77 − 4.77i)12-s + (−5.55 − 5.55i)13-s − 1.55i·14-s + (3.55 + 7.89i)15-s − 14.7·16-s + (−17.3 + 17.3i)17-s + ⋯ |
L(s) = 1 | + (0.112 − 0.112i)2-s + (−0.408 − 0.408i)3-s + 0.974i·4-s + (−0.934 − 0.355i)5-s − 0.0917·6-s + (0.492 − 0.492i)7-s + (0.221 + 0.221i)8-s + 0.333i·9-s + (−0.144 + 0.0651i)10-s + 1.03·11-s + (0.397 − 0.397i)12-s + (−0.426 − 0.426i)13-s − 0.110i·14-s + (0.236 + 0.526i)15-s − 0.924·16-s + (−1.02 + 1.02i)17-s + ⋯ |
Λ(s)=(=(15s/2ΓC(s)L(s)(0.991+0.130i)Λ(3−s)
Λ(s)=(=(15s/2ΓC(s+1)L(s)(0.991+0.130i)Λ(1−s)
Degree: |
2 |
Conductor: |
15
= 3⋅5
|
Sign: |
0.991+0.130i
|
Analytic conductor: |
0.408720 |
Root analytic conductor: |
0.639312 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ15(13,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 15, ( :1), 0.991+0.130i)
|
Particular Values
L(23) |
≈ |
0.712668−0.0467985i |
L(21) |
≈ |
0.712668−0.0467985i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(1.22+1.22i)T |
| 5 | 1+(4.67+1.77i)T |
good | 2 | 1+(−0.224+0.224i)T−4iT2 |
| 7 | 1+(−3.44+3.44i)T−49iT2 |
| 11 | 1−11.3T+121T2 |
| 13 | 1+(5.55+5.55i)T+169iT2 |
| 17 | 1+(17.3−17.3i)T−289iT2 |
| 19 | 1+8.69iT−361T2 |
| 23 | 1+(−11.5−11.5i)T+529iT2 |
| 29 | 1+35.1iT−841T2 |
| 31 | 1−10.6T+961T2 |
| 37 | 1+(6.04−6.04i)T−1.36e3iT2 |
| 41 | 1−0.696T+1.68e3T2 |
| 43 | 1+(26.4+26.4i)T+1.84e3iT2 |
| 47 | 1+(−44.2+44.2i)T−2.20e3iT2 |
| 53 | 1+(0.696+0.696i)T+2.80e3iT2 |
| 59 | 1−39.9iT−3.48e3T2 |
| 61 | 1−5.90T+3.72e3T2 |
| 67 | 1+(45.1−45.1i)T−4.48e3iT2 |
| 71 | 1+68T+5.04e3T2 |
| 73 | 1+(−77.7−77.7i)T+5.32e3iT2 |
| 79 | 1−24.4iT−6.24e3T2 |
| 83 | 1+(−13.1−13.1i)T+6.88e3iT2 |
| 89 | 1+82.1iT−7.92e3T2 |
| 97 | 1+(24.5−24.5i)T−9.40e3iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−19.38545099124929905717538849349, −17.50501961280439289905304112007, −16.91880099812900574531630198919, −15.31558856257637995376901438599, −13.40415428810468843990665511310, −12.15455676244450934468808544599, −11.19155019164708753230762264607, −8.502508879335912284238454206158, −7.17061287013729177032608512564, −4.23786525700189323868467818503,
4.70631905387741320263632042213, 6.73548236126271204075145647014, 9.138486862222952065413425180733, 10.89979022089326742614525957579, 11.91071577448152424986163173134, 14.30687367756745500554832403620, 15.16944591749910330032757698124, 16.34205360435462487295195706961, 18.10520000283866098205353209864, 19.24650811860761799651666020340