L(s) = 1 | + (0.224 − 0.224i)2-s + (−1.22 − 1.22i)3-s + 3.89i·4-s + (−4.67 − 1.77i)5-s − 0.550·6-s + (3.44 − 3.44i)7-s + (1.77 + 1.77i)8-s + 2.99i·9-s + (−1.44 + 0.651i)10-s + 11.3·11-s + (4.77 − 4.77i)12-s + (−5.55 − 5.55i)13-s − 1.55i·14-s + (3.55 + 7.89i)15-s − 14.7·16-s + (−17.3 + 17.3i)17-s + ⋯ |
L(s) = 1 | + (0.112 − 0.112i)2-s + (−0.408 − 0.408i)3-s + 0.974i·4-s + (−0.934 − 0.355i)5-s − 0.0917·6-s + (0.492 − 0.492i)7-s + (0.221 + 0.221i)8-s + 0.333i·9-s + (−0.144 + 0.0651i)10-s + 1.03·11-s + (0.397 − 0.397i)12-s + (−0.426 − 0.426i)13-s − 0.110i·14-s + (0.236 + 0.526i)15-s − 0.924·16-s + (−1.02 + 1.02i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 15 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.991 + 0.130i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 15 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.991 + 0.130i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.712668 - 0.0467985i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.712668 - 0.0467985i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (1.22 + 1.22i)T \) |
| 5 | \( 1 + (4.67 + 1.77i)T \) |
good | 2 | \( 1 + (-0.224 + 0.224i)T - 4iT^{2} \) |
| 7 | \( 1 + (-3.44 + 3.44i)T - 49iT^{2} \) |
| 11 | \( 1 - 11.3T + 121T^{2} \) |
| 13 | \( 1 + (5.55 + 5.55i)T + 169iT^{2} \) |
| 17 | \( 1 + (17.3 - 17.3i)T - 289iT^{2} \) |
| 19 | \( 1 + 8.69iT - 361T^{2} \) |
| 23 | \( 1 + (-11.5 - 11.5i)T + 529iT^{2} \) |
| 29 | \( 1 + 35.1iT - 841T^{2} \) |
| 31 | \( 1 - 10.6T + 961T^{2} \) |
| 37 | \( 1 + (6.04 - 6.04i)T - 1.36e3iT^{2} \) |
| 41 | \( 1 - 0.696T + 1.68e3T^{2} \) |
| 43 | \( 1 + (26.4 + 26.4i)T + 1.84e3iT^{2} \) |
| 47 | \( 1 + (-44.2 + 44.2i)T - 2.20e3iT^{2} \) |
| 53 | \( 1 + (0.696 + 0.696i)T + 2.80e3iT^{2} \) |
| 59 | \( 1 - 39.9iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 5.90T + 3.72e3T^{2} \) |
| 67 | \( 1 + (45.1 - 45.1i)T - 4.48e3iT^{2} \) |
| 71 | \( 1 + 68T + 5.04e3T^{2} \) |
| 73 | \( 1 + (-77.7 - 77.7i)T + 5.32e3iT^{2} \) |
| 79 | \( 1 - 24.4iT - 6.24e3T^{2} \) |
| 83 | \( 1 + (-13.1 - 13.1i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 + 82.1iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (24.5 - 24.5i)T - 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.38545099124929905717538849349, −17.50501961280439289905304112007, −16.91880099812900574531630198919, −15.31558856257637995376901438599, −13.40415428810468843990665511310, −12.15455676244450934468808544599, −11.19155019164708753230762264607, −8.502508879335912284238454206158, −7.17061287013729177032608512564, −4.23786525700189323868467818503,
4.70631905387741320263632042213, 6.73548236126271204075145647014, 9.138486862222952065413425180733, 10.89979022089326742614525957579, 11.91071577448152424986163173134, 14.30687367756745500554832403620, 15.16944591749910330032757698124, 16.34205360435462487295195706961, 18.10520000283866098205353209864, 19.24650811860761799651666020340