L(s) = 1 | + (0.951 − 0.309i)2-s + (0.587 + 0.809i)3-s + (0.809 − 0.587i)4-s + (−0.166 + 2.22i)5-s + (0.809 + 0.587i)6-s − 2.07i·7-s + (0.587 − 0.809i)8-s + (−0.309 + 0.951i)9-s + (0.530 + 2.17i)10-s + (0.160 + 0.494i)11-s + (0.951 + 0.309i)12-s + (−2.07 − 0.675i)13-s + (−0.642 − 1.97i)14-s + (−1.90 + 1.17i)15-s + (0.309 − 0.951i)16-s + (1.58 − 2.18i)17-s + ⋯ |
L(s) = 1 | + (0.672 − 0.218i)2-s + (0.339 + 0.467i)3-s + (0.404 − 0.293i)4-s + (−0.0746 + 0.997i)5-s + (0.330 + 0.239i)6-s − 0.785i·7-s + (0.207 − 0.286i)8-s + (−0.103 + 0.317i)9-s + (0.167 + 0.686i)10-s + (0.0484 + 0.149i)11-s + (0.274 + 0.0892i)12-s + (−0.576 − 0.187i)13-s + (−0.171 − 0.528i)14-s + (−0.491 + 0.303i)15-s + (0.0772 − 0.237i)16-s + (0.384 − 0.528i)17-s + ⋯ |
Λ(s)=(=(150s/2ΓC(s)L(s)(0.974−0.225i)Λ(2−s)
Λ(s)=(=(150s/2ΓC(s+1/2)L(s)(0.974−0.225i)Λ(1−s)
Degree: |
2 |
Conductor: |
150
= 2⋅3⋅52
|
Sign: |
0.974−0.225i
|
Analytic conductor: |
1.19775 |
Root analytic conductor: |
1.09442 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ150(19,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 150, ( :1/2), 0.974−0.225i)
|
Particular Values
L(1) |
≈ |
1.66549+0.190273i |
L(21) |
≈ |
1.66549+0.190273i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.951+0.309i)T |
| 3 | 1+(−0.587−0.809i)T |
| 5 | 1+(0.166−2.22i)T |
good | 7 | 1+2.07iT−7T2 |
| 11 | 1+(−0.160−0.494i)T+(−8.89+6.46i)T2 |
| 13 | 1+(2.07+0.675i)T+(10.5+7.64i)T2 |
| 17 | 1+(−1.58+2.18i)T+(−5.25−16.1i)T2 |
| 19 | 1+(5.55+4.03i)T+(5.87+18.0i)T2 |
| 23 | 1+(−3.67+1.19i)T+(18.6−13.5i)T2 |
| 29 | 1+(7.30−5.30i)T+(8.96−27.5i)T2 |
| 31 | 1+(−5.99−4.35i)T+(9.57+29.4i)T2 |
| 37 | 1+(5.04+1.64i)T+(29.9+21.7i)T2 |
| 41 | 1+(0.996−3.06i)T+(−33.1−24.0i)T2 |
| 43 | 1+9.53iT−43T2 |
| 47 | 1+(−5.44−7.49i)T+(−14.5+44.6i)T2 |
| 53 | 1+(1.43+1.97i)T+(−16.3+50.4i)T2 |
| 59 | 1+(2.67−8.22i)T+(−47.7−34.6i)T2 |
| 61 | 1+(−3.88−11.9i)T+(−49.3+35.8i)T2 |
| 67 | 1+(−3.93+5.41i)T+(−20.7−63.7i)T2 |
| 71 | 1+(−6.60+4.80i)T+(21.9−67.5i)T2 |
| 73 | 1+(−3.65+1.18i)T+(59.0−42.9i)T2 |
| 79 | 1+(−2.84+2.06i)T+(24.4−75.1i)T2 |
| 83 | 1+(−7.71+10.6i)T+(−25.6−78.9i)T2 |
| 89 | 1+(−3.04−9.37i)T+(−72.0+52.3i)T2 |
| 97 | 1+(−6.32−8.70i)T+(−29.9+92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.25736202780856522039435762894, −12.05564862990500772959903738071, −10.78223322511534004117700036607, −10.45713055026890340304086348532, −9.122621741359314426490211681377, −7.48322894167670073512067482602, −6.69896461041228368041805692190, −5.05356691651534727532203987559, −3.82274750758155501537675217923, −2.62218181372433609251246945968,
2.10304965717315225729640861085, 3.92387088891517629959245578434, 5.30440925796893097663807519466, 6.31676008283695478996744564947, 7.82134132181401199735867757555, 8.593086669269589357102929260979, 9.736228551487315412734762513803, 11.40370012959080150144268339738, 12.36992955906251677802269684007, 12.83262699557625380437605109669