Properties

Label 2-150-1.1-c3-0-7
Degree $2$
Conductor $150$
Sign $-1$
Analytic cond. $8.85028$
Root an. cond. $2.97494$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 3·3-s + 4·4-s − 6·6-s − 23·7-s − 8·8-s + 9·9-s − 30·11-s + 12·12-s − 29·13-s + 46·14-s + 16·16-s − 78·17-s − 18·18-s + 149·19-s − 69·21-s + 60·22-s − 150·23-s − 24·24-s + 58·26-s + 27·27-s − 92·28-s − 234·29-s − 217·31-s − 32·32-s − 90·33-s + 156·34-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.408·6-s − 1.24·7-s − 0.353·8-s + 1/3·9-s − 0.822·11-s + 0.288·12-s − 0.618·13-s + 0.878·14-s + 1/4·16-s − 1.11·17-s − 0.235·18-s + 1.79·19-s − 0.717·21-s + 0.581·22-s − 1.35·23-s − 0.204·24-s + 0.437·26-s + 0.192·27-s − 0.620·28-s − 1.49·29-s − 1.25·31-s − 0.176·32-s − 0.474·33-s + 0.786·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 150 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(150\)    =    \(2 \cdot 3 \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(8.85028\)
Root analytic conductor: \(2.97494\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 150,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + p T \)
3 \( 1 - p T \)
5 \( 1 \)
good7 \( 1 + 23 T + p^{3} T^{2} \)
11 \( 1 + 30 T + p^{3} T^{2} \)
13 \( 1 + 29 T + p^{3} T^{2} \)
17 \( 1 + 78 T + p^{3} T^{2} \)
19 \( 1 - 149 T + p^{3} T^{2} \)
23 \( 1 + 150 T + p^{3} T^{2} \)
29 \( 1 + 234 T + p^{3} T^{2} \)
31 \( 1 + 7 p T + p^{3} T^{2} \)
37 \( 1 + 146 T + p^{3} T^{2} \)
41 \( 1 + 156 T + p^{3} T^{2} \)
43 \( 1 - 433 T + p^{3} T^{2} \)
47 \( 1 + 30 T + p^{3} T^{2} \)
53 \( 1 - 552 T + p^{3} T^{2} \)
59 \( 1 + 270 T + p^{3} T^{2} \)
61 \( 1 - 275 T + p^{3} T^{2} \)
67 \( 1 + 803 T + p^{3} T^{2} \)
71 \( 1 - 660 T + p^{3} T^{2} \)
73 \( 1 - 646 T + p^{3} T^{2} \)
79 \( 1 - 992 T + p^{3} T^{2} \)
83 \( 1 - 846 T + p^{3} T^{2} \)
89 \( 1 + 1488 T + p^{3} T^{2} \)
97 \( 1 - 319 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.08169848805790112871830849969, −10.75963470033737202952304063252, −9.715580222503468816959463814505, −9.181772491829219893931558861413, −7.79678924652181507745354253462, −6.99818726527971649949716632810, −5.56969440598652377685476096237, −3.59073222805582762328566198991, −2.30066864127416624612183458089, 0, 2.30066864127416624612183458089, 3.59073222805582762328566198991, 5.56969440598652377685476096237, 6.99818726527971649949716632810, 7.79678924652181507745354253462, 9.181772491829219893931558861413, 9.715580222503468816959463814505, 10.75963470033737202952304063252, 12.08169848805790112871830849969

Graph of the $Z$-function along the critical line