L(s) = 1 | + 2i·2-s − 3i·3-s − 4·4-s + 6·6-s + i·7-s − 8i·8-s − 9·9-s + 42·11-s + 12i·12-s − 67i·13-s − 2·14-s + 16·16-s − 54i·17-s − 18i·18-s + 115·19-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 0.577i·3-s − 0.5·4-s + 0.408·6-s + 0.0539i·7-s − 0.353i·8-s − 0.333·9-s + 1.15·11-s + 0.288i·12-s − 1.42i·13-s − 0.0381·14-s + 0.250·16-s − 0.770i·17-s − 0.235i·18-s + 1.38·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.894 + 0.447i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 150 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.51767 - 0.358273i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.51767 - 0.358273i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - 2iT \) |
| 3 | \( 1 + 3iT \) |
| 5 | \( 1 \) |
good | 7 | \( 1 - iT - 343T^{2} \) |
| 11 | \( 1 - 42T + 1.33e3T^{2} \) |
| 13 | \( 1 + 67iT - 2.19e3T^{2} \) |
| 17 | \( 1 + 54iT - 4.91e3T^{2} \) |
| 19 | \( 1 - 115T + 6.85e3T^{2} \) |
| 23 | \( 1 + 162iT - 1.21e4T^{2} \) |
| 29 | \( 1 - 210T + 2.43e4T^{2} \) |
| 31 | \( 1 + 193T + 2.97e4T^{2} \) |
| 37 | \( 1 - 286iT - 5.06e4T^{2} \) |
| 41 | \( 1 - 12T + 6.89e4T^{2} \) |
| 43 | \( 1 - 263iT - 7.95e4T^{2} \) |
| 47 | \( 1 + 414iT - 1.03e5T^{2} \) |
| 53 | \( 1 + 192iT - 1.48e5T^{2} \) |
| 59 | \( 1 + 690T + 2.05e5T^{2} \) |
| 61 | \( 1 + 733T + 2.26e5T^{2} \) |
| 67 | \( 1 + 299iT - 3.00e5T^{2} \) |
| 71 | \( 1 + 228T + 3.57e5T^{2} \) |
| 73 | \( 1 - 938iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 160T + 4.93e5T^{2} \) |
| 83 | \( 1 + 462iT - 5.71e5T^{2} \) |
| 89 | \( 1 - 240T + 7.04e5T^{2} \) |
| 97 | \( 1 - 511iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.54057490409254281757965282229, −11.72882092462804466760756431651, −10.31581325685522804454997161309, −9.145745286441402984217522441229, −8.119807602237743918395530865958, −7.11223521662485343167009696141, −6.11117726628626872338109923775, −4.89227719407158069772713151397, −3.12373935530626252317664362402, −0.864941365152578160586413356200,
1.55349031487267319906828889420, 3.46514760153736465967703946633, 4.43486644634636739135977775392, 5.90350951884859667764036100025, 7.38139328626076788379556180652, 9.038358464480470032167562830387, 9.425627480780673480656399868532, 10.69756348222730469370161281184, 11.61708968336869741702592152970, 12.27926975492936258042810715495