L(s) = 1 | + 2i·2-s − 3i·3-s − 4·4-s + 6·6-s + i·7-s − 8i·8-s − 9·9-s + 42·11-s + 12i·12-s − 67i·13-s − 2·14-s + 16·16-s − 54i·17-s − 18i·18-s + 115·19-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 0.577i·3-s − 0.5·4-s + 0.408·6-s + 0.0539i·7-s − 0.353i·8-s − 0.333·9-s + 1.15·11-s + 0.288i·12-s − 1.42i·13-s − 0.0381·14-s + 0.250·16-s − 0.770i·17-s − 0.235i·18-s + 1.38·19-s + ⋯ |
Λ(s)=(=(150s/2ΓC(s)L(s)(0.894+0.447i)Λ(4−s)
Λ(s)=(=(150s/2ΓC(s+3/2)L(s)(0.894+0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
150
= 2⋅3⋅52
|
Sign: |
0.894+0.447i
|
Analytic conductor: |
8.85028 |
Root analytic conductor: |
2.97494 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ150(49,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 150, ( :3/2), 0.894+0.447i)
|
Particular Values
L(2) |
≈ |
1.51767−0.358273i |
L(21) |
≈ |
1.51767−0.358273i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−2iT |
| 3 | 1+3iT |
| 5 | 1 |
good | 7 | 1−iT−343T2 |
| 11 | 1−42T+1.33e3T2 |
| 13 | 1+67iT−2.19e3T2 |
| 17 | 1+54iT−4.91e3T2 |
| 19 | 1−115T+6.85e3T2 |
| 23 | 1+162iT−1.21e4T2 |
| 29 | 1−210T+2.43e4T2 |
| 31 | 1+193T+2.97e4T2 |
| 37 | 1−286iT−5.06e4T2 |
| 41 | 1−12T+6.89e4T2 |
| 43 | 1−263iT−7.95e4T2 |
| 47 | 1+414iT−1.03e5T2 |
| 53 | 1+192iT−1.48e5T2 |
| 59 | 1+690T+2.05e5T2 |
| 61 | 1+733T+2.26e5T2 |
| 67 | 1+299iT−3.00e5T2 |
| 71 | 1+228T+3.57e5T2 |
| 73 | 1−938iT−3.89e5T2 |
| 79 | 1−160T+4.93e5T2 |
| 83 | 1+462iT−5.71e5T2 |
| 89 | 1−240T+7.04e5T2 |
| 97 | 1−511iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.54057490409254281757965282229, −11.72882092462804466760756431651, −10.31581325685522804454997161309, −9.145745286441402984217522441229, −8.119807602237743918395530865958, −7.11223521662485343167009696141, −6.11117726628626872338109923775, −4.89227719407158069772713151397, −3.12373935530626252317664362402, −0.864941365152578160586413356200,
1.55349031487267319906828889420, 3.46514760153736465967703946633, 4.43486644634636739135977775392, 5.90350951884859667764036100025, 7.38139328626076788379556180652, 9.038358464480470032167562830387, 9.425627480780673480656399868532, 10.69756348222730469370161281184, 11.61708968336869741702592152970, 12.27926975492936258042810715495