Properties

Label 2-150-1.1-c7-0-1
Degree $2$
Conductor $150$
Sign $1$
Analytic cond. $46.8577$
Root an. cond. $6.84527$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·2-s + 27·3-s + 64·4-s − 216·6-s − 1.30e3·7-s − 512·8-s + 729·9-s − 5.45e3·11-s + 1.72e3·12-s − 5.23e3·13-s + 1.04e4·14-s + 4.09e3·16-s − 4.87e3·17-s − 5.83e3·18-s + 3.27e4·19-s − 3.53e4·21-s + 4.36e4·22-s + 8.34e4·23-s − 1.38e4·24-s + 4.19e4·26-s + 1.96e4·27-s − 8.38e4·28-s − 7.34e4·29-s + 2.44e5·31-s − 3.27e4·32-s − 1.47e5·33-s + 3.89e4·34-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 0.5·4-s − 0.408·6-s − 1.44·7-s − 0.353·8-s + 0.333·9-s − 1.23·11-s + 0.288·12-s − 0.661·13-s + 1.02·14-s + 0.250·16-s − 0.240·17-s − 0.235·18-s + 1.09·19-s − 0.833·21-s + 0.874·22-s + 1.43·23-s − 0.204·24-s + 0.467·26-s + 0.192·27-s − 0.721·28-s − 0.558·29-s + 1.47·31-s − 0.176·32-s − 0.713·33-s + 0.170·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 150 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(150\)    =    \(2 \cdot 3 \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(46.8577\)
Root analytic conductor: \(6.84527\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 150,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(1.148251430\)
\(L(\frac12)\) \(\approx\) \(1.148251430\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 8T \)
3 \( 1 - 27T \)
5 \( 1 \)
good7 \( 1 + 1.30e3T + 8.23e5T^{2} \)
11 \( 1 + 5.45e3T + 1.94e7T^{2} \)
13 \( 1 + 5.23e3T + 6.27e7T^{2} \)
17 \( 1 + 4.87e3T + 4.10e8T^{2} \)
19 \( 1 - 3.27e4T + 8.93e8T^{2} \)
23 \( 1 - 8.34e4T + 3.40e9T^{2} \)
29 \( 1 + 7.34e4T + 1.72e10T^{2} \)
31 \( 1 - 2.44e5T + 2.75e10T^{2} \)
37 \( 1 + 1.07e5T + 9.49e10T^{2} \)
41 \( 1 - 3.96e5T + 1.94e11T^{2} \)
43 \( 1 + 7.25e5T + 2.71e11T^{2} \)
47 \( 1 + 8.01e5T + 5.06e11T^{2} \)
53 \( 1 - 1.22e6T + 1.17e12T^{2} \)
59 \( 1 - 2.32e6T + 2.48e12T^{2} \)
61 \( 1 - 2.63e6T + 3.14e12T^{2} \)
67 \( 1 - 2.09e5T + 6.06e12T^{2} \)
71 \( 1 - 3.76e6T + 9.09e12T^{2} \)
73 \( 1 + 2.81e6T + 1.10e13T^{2} \)
79 \( 1 + 8.68e6T + 1.92e13T^{2} \)
83 \( 1 - 5.77e6T + 2.71e13T^{2} \)
89 \( 1 - 1.02e7T + 4.42e13T^{2} \)
97 \( 1 - 5.19e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.60322915362813590154605305350, −10.21552257058038959263009157012, −9.730895149221286055147911380860, −8.684261031812378004344921641304, −7.53119859192018395936214215869, −6.68601550170479490065799312327, −5.19678783447288911808227169820, −3.29857096706894911872759428991, −2.49436493380797816953037578642, −0.63087753497333766428734834042, 0.63087753497333766428734834042, 2.49436493380797816953037578642, 3.29857096706894911872759428991, 5.19678783447288911808227169820, 6.68601550170479490065799312327, 7.53119859192018395936214215869, 8.684261031812378004344921641304, 9.730895149221286055147911380860, 10.21552257058038959263009157012, 11.60322915362813590154605305350

Graph of the $Z$-function along the critical line