L(s) = 1 | + (−5.65 + 5.65i)2-s + (−0.750 − 46.7i)3-s − 64.0i·4-s + (268. + 260. i)6-s + (661. + 661. i)7-s + (362. + 362. i)8-s + (−2.18e3 + 70.1i)9-s − 6.67e3i·11-s + (−2.99e3 + 48.0i)12-s + (4.25e3 − 4.25e3i)13-s − 7.48e3·14-s − 4.09e3·16-s + (1.15e4 − 1.15e4i)17-s + (1.19e4 − 1.27e4i)18-s + 5.65e4i·19-s + ⋯ |
L(s) = 1 | + (−0.499 + 0.499i)2-s + (−0.0160 − 0.999i)3-s − 0.500i·4-s + (0.507 + 0.491i)6-s + (0.729 + 0.729i)7-s + (0.250 + 0.250i)8-s + (−0.999 + 0.0320i)9-s − 1.51i·11-s + (−0.499 + 0.00801i)12-s + (0.536 − 0.536i)13-s − 0.729·14-s − 0.250·16-s + (0.568 − 0.568i)17-s + (0.483 − 0.515i)18-s + 1.89i·19-s + ⋯ |
Λ(s)=(=(150s/2ΓC(s)L(s)(0.245+0.969i)Λ(8−s)
Λ(s)=(=(150s/2ΓC(s+7/2)L(s)(0.245+0.969i)Λ(1−s)
Degree: |
2 |
Conductor: |
150
= 2⋅3⋅52
|
Sign: |
0.245+0.969i
|
Analytic conductor: |
46.8577 |
Root analytic conductor: |
6.84527 |
Motivic weight: |
7 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ150(107,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 150, ( :7/2), 0.245+0.969i)
|
Particular Values
L(4) |
≈ |
1.549285946 |
L(21) |
≈ |
1.549285946 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(5.65−5.65i)T |
| 3 | 1+(0.750+46.7i)T |
| 5 | 1 |
good | 7 | 1+(−661.−661.i)T+8.23e5iT2 |
| 11 | 1+6.67e3iT−1.94e7T2 |
| 13 | 1+(−4.25e3+4.25e3i)T−6.27e7iT2 |
| 17 | 1+(−1.15e4+1.15e4i)T−4.10e8iT2 |
| 19 | 1−5.65e4iT−8.93e8T2 |
| 23 | 1+(−3.68e4−3.68e4i)T+3.40e9iT2 |
| 29 | 1+3.43e4T+1.72e10T2 |
| 31 | 1−1.54e5T+2.75e10T2 |
| 37 | 1+(8.63e4+8.63e4i)T+9.49e10iT2 |
| 41 | 1+5.20e5iT−1.94e11T2 |
| 43 | 1+(−4.99e5+4.99e5i)T−2.71e11iT2 |
| 47 | 1+(−4.71e4+4.71e4i)T−5.06e11iT2 |
| 53 | 1+(−3.15e5−3.15e5i)T+1.17e12iT2 |
| 59 | 1+1.04e6T+2.48e12T2 |
| 61 | 1+1.20e6T+3.14e12T2 |
| 67 | 1+(2.42e5+2.42e5i)T+6.06e12iT2 |
| 71 | 1−3.41e4iT−9.09e12T2 |
| 73 | 1+(−2.31e6+2.31e6i)T−1.10e13iT2 |
| 79 | 1+7.82e6iT−1.92e13T2 |
| 83 | 1+(5.24e6+5.24e6i)T+2.71e13iT2 |
| 89 | 1+5.17e6T+4.42e13T2 |
| 97 | 1+(1.14e5+1.14e5i)T+8.07e13iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.52638420605878934528846721308, −10.55616746471011188494186071467, −8.935737582925310153412544214585, −8.262478201117426844660310286188, −7.47593409009046536804969387808, −5.93527514044533818341003350510, −5.55681491514889901975985187630, −3.22569408344256229939944122733, −1.66974650596095551923432082222, −0.59208310091006467160891965008,
1.11750271827958720691982010511, 2.65110813785814079154078554669, 4.20105228012598375199797384763, 4.82128532744342991870341888683, 6.74503483332429036310347206918, 7.962962844353988178905431578491, 9.079072094313401146570215503282, 9.917971612307814084834245401037, 10.84971524214486008778665797828, 11.47488889942030088558546180632