L(s) = 1 | + (−5.65 + 5.65i)2-s + (−0.750 − 46.7i)3-s − 64.0i·4-s + (268. + 260. i)6-s + (661. + 661. i)7-s + (362. + 362. i)8-s + (−2.18e3 + 70.1i)9-s − 6.67e3i·11-s + (−2.99e3 + 48.0i)12-s + (4.25e3 − 4.25e3i)13-s − 7.48e3·14-s − 4.09e3·16-s + (1.15e4 − 1.15e4i)17-s + (1.19e4 − 1.27e4i)18-s + 5.65e4i·19-s + ⋯ |
L(s) = 1 | + (−0.499 + 0.499i)2-s + (−0.0160 − 0.999i)3-s − 0.500i·4-s + (0.507 + 0.491i)6-s + (0.729 + 0.729i)7-s + (0.250 + 0.250i)8-s + (−0.999 + 0.0320i)9-s − 1.51i·11-s + (−0.499 + 0.00801i)12-s + (0.536 − 0.536i)13-s − 0.729·14-s − 0.250·16-s + (0.568 − 0.568i)17-s + (0.483 − 0.515i)18-s + 1.89i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.245 + 0.969i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 150 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (0.245 + 0.969i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(4)\) |
\(\approx\) |
\(1.549285946\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.549285946\) |
\(L(\frac{9}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (5.65 - 5.65i)T \) |
| 3 | \( 1 + (0.750 + 46.7i)T \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + (-661. - 661. i)T + 8.23e5iT^{2} \) |
| 11 | \( 1 + 6.67e3iT - 1.94e7T^{2} \) |
| 13 | \( 1 + (-4.25e3 + 4.25e3i)T - 6.27e7iT^{2} \) |
| 17 | \( 1 + (-1.15e4 + 1.15e4i)T - 4.10e8iT^{2} \) |
| 19 | \( 1 - 5.65e4iT - 8.93e8T^{2} \) |
| 23 | \( 1 + (-3.68e4 - 3.68e4i)T + 3.40e9iT^{2} \) |
| 29 | \( 1 + 3.43e4T + 1.72e10T^{2} \) |
| 31 | \( 1 - 1.54e5T + 2.75e10T^{2} \) |
| 37 | \( 1 + (8.63e4 + 8.63e4i)T + 9.49e10iT^{2} \) |
| 41 | \( 1 + 5.20e5iT - 1.94e11T^{2} \) |
| 43 | \( 1 + (-4.99e5 + 4.99e5i)T - 2.71e11iT^{2} \) |
| 47 | \( 1 + (-4.71e4 + 4.71e4i)T - 5.06e11iT^{2} \) |
| 53 | \( 1 + (-3.15e5 - 3.15e5i)T + 1.17e12iT^{2} \) |
| 59 | \( 1 + 1.04e6T + 2.48e12T^{2} \) |
| 61 | \( 1 + 1.20e6T + 3.14e12T^{2} \) |
| 67 | \( 1 + (2.42e5 + 2.42e5i)T + 6.06e12iT^{2} \) |
| 71 | \( 1 - 3.41e4iT - 9.09e12T^{2} \) |
| 73 | \( 1 + (-2.31e6 + 2.31e6i)T - 1.10e13iT^{2} \) |
| 79 | \( 1 + 7.82e6iT - 1.92e13T^{2} \) |
| 83 | \( 1 + (5.24e6 + 5.24e6i)T + 2.71e13iT^{2} \) |
| 89 | \( 1 + 5.17e6T + 4.42e13T^{2} \) |
| 97 | \( 1 + (1.14e5 + 1.14e5i)T + 8.07e13iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.52638420605878934528846721308, −10.55616746471011188494186071467, −8.935737582925310153412544214585, −8.262478201117426844660310286188, −7.47593409009046536804969387808, −5.93527514044533818341003350510, −5.55681491514889901975985187630, −3.22569408344256229939944122733, −1.66974650596095551923432082222, −0.59208310091006467160891965008,
1.11750271827958720691982010511, 2.65110813785814079154078554669, 4.20105228012598375199797384763, 4.82128532744342991870341888683, 6.74503483332429036310347206918, 7.962962844353988178905431578491, 9.079072094313401146570215503282, 9.917971612307814084834245401037, 10.84971524214486008778665797828, 11.47488889942030088558546180632