L(s) = 1 | + 2-s + 4-s − 5-s + 2·8-s − 9-s − 10-s + 2·16-s − 18-s − 19-s − 20-s + 25-s + 31-s + 2·32-s − 36-s − 38-s − 2·40-s + 2·41-s + 45-s + 2·47-s + 50-s − 59-s + 62-s + 3·64-s − 2·67-s − 2·71-s − 2·72-s − 76-s + ⋯ |
L(s) = 1 | + 2-s + 4-s − 5-s + 2·8-s − 9-s − 10-s + 2·16-s − 18-s − 19-s − 20-s + 25-s + 31-s + 2·32-s − 36-s − 38-s − 2·40-s + 2·41-s + 45-s + 2·47-s + 50-s − 59-s + 62-s + 3·64-s − 2·67-s − 2·71-s − 2·72-s − 76-s + ⋯ |
Λ(s)=(=(2307361s/2ΓC(s)2L(s)Λ(1−s)
Λ(s)=(=(2307361s/2ΓC(s)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
2307361
= 74⋅312
|
Sign: |
1
|
Analytic conductor: |
0.574684 |
Root analytic conductor: |
0.870677 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 2307361, ( :0,0), 1)
|
Particular Values
L(21) |
≈ |
1.902428738 |
L(21) |
≈ |
1.902428738 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 7 | | 1 |
| 31 | C2 | 1−T+T2 |
good | 2 | C1×C2 | (1−T)2(1+T+T2) |
| 3 | C2 | (1−T+T2)(1+T+T2) |
| 5 | C1×C2 | (1+T)2(1−T+T2) |
| 11 | C2 | (1−T+T2)(1+T+T2) |
| 13 | C1×C1 | (1−T)2(1+T)2 |
| 17 | C2 | (1−T+T2)(1+T+T2) |
| 19 | C1×C2 | (1+T)2(1−T+T2) |
| 23 | C2 | (1−T+T2)(1+T+T2) |
| 29 | C1×C1 | (1−T)2(1+T)2 |
| 37 | C2 | (1−T+T2)(1+T+T2) |
| 41 | C2 | (1−T+T2)2 |
| 43 | C1×C1 | (1−T)2(1+T)2 |
| 47 | C2 | (1−T+T2)2 |
| 53 | C2 | (1−T+T2)(1+T+T2) |
| 59 | C1×C2 | (1+T)2(1−T+T2) |
| 61 | C2 | (1−T+T2)(1+T+T2) |
| 67 | C2 | (1+T+T2)2 |
| 71 | C2 | (1+T+T2)2 |
| 73 | C2 | (1−T+T2)(1+T+T2) |
| 79 | C2 | (1−T+T2)(1+T+T2) |
| 83 | C1×C1 | (1−T)2(1+T)2 |
| 89 | C2 | (1−T+T2)(1+T+T2) |
| 97 | C2 | (1−T+T2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.18120124247099726860934638272, −9.356040631438886640778695076989, −8.860705203322919815819196350857, −8.743879257593704398437238735820, −7.944948598441943294811610760986, −7.906186467820005687428357321296, −7.42579268416548263474977017681, −7.14542225264980719802034565323, −6.48425072733216374184969933383, −6.22421965381850730879239178216, −5.68019894342069656689627642347, −5.37159574964039234795200812692, −4.57982136357682714328017470306, −4.41773479427198656877679632591, −4.14707869902630960258815201170, −3.51969767269653018714950428693, −2.78809519777782555222884992936, −2.68790291850424569650232601203, −1.84312791933419256143066304880, −1.00892909238363937758976610376,
1.00892909238363937758976610376, 1.84312791933419256143066304880, 2.68790291850424569650232601203, 2.78809519777782555222884992936, 3.51969767269653018714950428693, 4.14707869902630960258815201170, 4.41773479427198656877679632591, 4.57982136357682714328017470306, 5.37159574964039234795200812692, 5.68019894342069656689627642347, 6.22421965381850730879239178216, 6.48425072733216374184969933383, 7.14542225264980719802034565323, 7.42579268416548263474977017681, 7.906186467820005687428357321296, 7.944948598441943294811610760986, 8.743879257593704398437238735820, 8.860705203322919815819196350857, 9.356040631438886640778695076989, 10.18120124247099726860934638272