Properties

Label 4-1519e2-1.1-c0e2-0-0
Degree $4$
Conductor $2307361$
Sign $1$
Analytic cond. $0.574684$
Root an. cond. $0.870677$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 5-s + 2·8-s − 9-s − 10-s + 2·16-s − 18-s − 19-s − 20-s + 25-s + 31-s + 2·32-s − 36-s − 38-s − 2·40-s + 2·41-s + 45-s + 2·47-s + 50-s − 59-s + 62-s + 3·64-s − 2·67-s − 2·71-s − 2·72-s − 76-s + ⋯
L(s)  = 1  + 2-s + 4-s − 5-s + 2·8-s − 9-s − 10-s + 2·16-s − 18-s − 19-s − 20-s + 25-s + 31-s + 2·32-s − 36-s − 38-s − 2·40-s + 2·41-s + 45-s + 2·47-s + 50-s − 59-s + 62-s + 3·64-s − 2·67-s − 2·71-s − 2·72-s − 76-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2307361 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2307361 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(2307361\)    =    \(7^{4} \cdot 31^{2}\)
Sign: $1$
Analytic conductor: \(0.574684\)
Root analytic conductor: \(0.870677\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 2307361,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.902428738\)
\(L(\frac12)\) \(\approx\) \(1.902428738\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad7 \( 1 \)
31$C_2$ \( 1 - T + T^{2} \)
good2$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
3$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
5$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
11$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
13$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
17$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
19$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
23$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
29$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
37$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
41$C_2$ \( ( 1 - T + T^{2} )^{2} \)
43$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
47$C_2$ \( ( 1 - T + T^{2} )^{2} \)
53$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
59$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
61$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
67$C_2$ \( ( 1 + T + T^{2} )^{2} \)
71$C_2$ \( ( 1 + T + T^{2} )^{2} \)
73$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
79$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
83$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
89$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
97$C_2$ \( ( 1 - T + T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.18120124247099726860934638272, −9.356040631438886640778695076989, −8.860705203322919815819196350857, −8.743879257593704398437238735820, −7.944948598441943294811610760986, −7.906186467820005687428357321296, −7.42579268416548263474977017681, −7.14542225264980719802034565323, −6.48425072733216374184969933383, −6.22421965381850730879239178216, −5.68019894342069656689627642347, −5.37159574964039234795200812692, −4.57982136357682714328017470306, −4.41773479427198656877679632591, −4.14707869902630960258815201170, −3.51969767269653018714950428693, −2.78809519777782555222884992936, −2.68790291850424569650232601203, −1.84312791933419256143066304880, −1.00892909238363937758976610376, 1.00892909238363937758976610376, 1.84312791933419256143066304880, 2.68790291850424569650232601203, 2.78809519777782555222884992936, 3.51969767269653018714950428693, 4.14707869902630960258815201170, 4.41773479427198656877679632591, 4.57982136357682714328017470306, 5.37159574964039234795200812692, 5.68019894342069656689627642347, 6.22421965381850730879239178216, 6.48425072733216374184969933383, 7.14542225264980719802034565323, 7.42579268416548263474977017681, 7.906186467820005687428357321296, 7.944948598441943294811610760986, 8.743879257593704398437238735820, 8.860705203322919815819196350857, 9.356040631438886640778695076989, 10.18120124247099726860934638272

Graph of the $Z$-function along the critical line