L(s) = 1 | + (0.491 − 1.32i)2-s + 0.754i·3-s + (−1.51 − 1.30i)4-s − 2.08i·5-s + (1 + 0.370i)6-s − 2.23i·7-s + (−2.47 + 1.37i)8-s + 2.43·9-s + (−2.76 − 1.02i)10-s − 0.602·11-s + (0.982 − 1.14i)12-s + 1.29·13-s + (−2.96 − 1.09i)14-s + 1.57·15-s + (0.602 + 3.95i)16-s + 2.20·17-s + ⋯ |
L(s) = 1 | + (0.347 − 0.937i)2-s + 0.435i·3-s + (−0.758 − 0.651i)4-s − 0.934i·5-s + (0.408 + 0.151i)6-s − 0.845i·7-s + (−0.874 + 0.484i)8-s + 0.810·9-s + (−0.875 − 0.324i)10-s − 0.181·11-s + (0.283 − 0.330i)12-s + 0.359·13-s + (−0.792 − 0.293i)14-s + 0.406·15-s + (0.150 + 0.988i)16-s + 0.534·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 152 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.133 + 0.991i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 152 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.133 + 0.991i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.819397 - 0.937028i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.819397 - 0.937028i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.491 + 1.32i)T \) |
| 19 | \( 1 + (2.60 - 3.49i)T \) |
good | 3 | \( 1 - 0.754iT - 3T^{2} \) |
| 5 | \( 1 + 2.08iT - 5T^{2} \) |
| 7 | \( 1 + 2.23iT - 7T^{2} \) |
| 11 | \( 1 + 0.602T + 11T^{2} \) |
| 13 | \( 1 - 1.29T + 13T^{2} \) |
| 17 | \( 1 - 2.20T + 17T^{2} \) |
| 23 | \( 1 - 6.19iT - 23T^{2} \) |
| 29 | \( 1 + 8.20T + 29T^{2} \) |
| 31 | \( 1 - 4.94T + 31T^{2} \) |
| 37 | \( 1 - 6.91T + 37T^{2} \) |
| 41 | \( 1 + 6.53iT - 41T^{2} \) |
| 43 | \( 1 + 0.191T + 43T^{2} \) |
| 47 | \( 1 - 0.223iT - 47T^{2} \) |
| 53 | \( 1 + 4.83T + 53T^{2} \) |
| 59 | \( 1 + 5.60iT - 59T^{2} \) |
| 61 | \( 1 - 11.7iT - 61T^{2} \) |
| 67 | \( 1 + 6.23iT - 67T^{2} \) |
| 71 | \( 1 + 12.4T + 71T^{2} \) |
| 73 | \( 1 + 8.27T + 73T^{2} \) |
| 79 | \( 1 + 15.4T + 79T^{2} \) |
| 83 | \( 1 - 2T + 83T^{2} \) |
| 89 | \( 1 + 7.44iT - 89T^{2} \) |
| 97 | \( 1 - 17.6iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.86467238139947487800576822675, −11.74987986945764513651194017499, −10.62619775345373095870098705051, −9.892525981430369545325916941861, −8.952337539001952514743487742608, −7.60493299219672069042240902268, −5.73733287039432734139483405612, −4.53068082412825169969255610087, −3.68925899749569067221896621208, −1.37884138731319244440393907220,
2.79293148298529568667643952077, 4.46323300962751062202782564014, 5.97824227559216108471179333755, 6.78473533674838398708409798546, 7.76863075865256490109849373093, 8.882596223234786853778538277567, 10.11336723477964934869521665060, 11.44660812589026750076984440729, 12.63938654234220350820687296576, 13.22469991580347004574451578416