L(s) = 1 | + (0.491 − 1.32i)2-s + 0.754i·3-s + (−1.51 − 1.30i)4-s − 2.08i·5-s + (1 + 0.370i)6-s − 2.23i·7-s + (−2.47 + 1.37i)8-s + 2.43·9-s + (−2.76 − 1.02i)10-s − 0.602·11-s + (0.982 − 1.14i)12-s + 1.29·13-s + (−2.96 − 1.09i)14-s + 1.57·15-s + (0.602 + 3.95i)16-s + 2.20·17-s + ⋯ |
L(s) = 1 | + (0.347 − 0.937i)2-s + 0.435i·3-s + (−0.758 − 0.651i)4-s − 0.934i·5-s + (0.408 + 0.151i)6-s − 0.845i·7-s + (−0.874 + 0.484i)8-s + 0.810·9-s + (−0.875 − 0.324i)10-s − 0.181·11-s + (0.283 − 0.330i)12-s + 0.359·13-s + (−0.792 − 0.293i)14-s + 0.406·15-s + (0.150 + 0.988i)16-s + 0.534·17-s + ⋯ |
Λ(s)=(=(152s/2ΓC(s)L(s)(−0.133+0.991i)Λ(2−s)
Λ(s)=(=(152s/2ΓC(s+1/2)L(s)(−0.133+0.991i)Λ(1−s)
Degree: |
2 |
Conductor: |
152
= 23⋅19
|
Sign: |
−0.133+0.991i
|
Analytic conductor: |
1.21372 |
Root analytic conductor: |
1.10169 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ152(75,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 152, ( :1/2), −0.133+0.991i)
|
Particular Values
L(1) |
≈ |
0.819397−0.937028i |
L(21) |
≈ |
0.819397−0.937028i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.491+1.32i)T |
| 19 | 1+(2.60−3.49i)T |
good | 3 | 1−0.754iT−3T2 |
| 5 | 1+2.08iT−5T2 |
| 7 | 1+2.23iT−7T2 |
| 11 | 1+0.602T+11T2 |
| 13 | 1−1.29T+13T2 |
| 17 | 1−2.20T+17T2 |
| 23 | 1−6.19iT−23T2 |
| 29 | 1+8.20T+29T2 |
| 31 | 1−4.94T+31T2 |
| 37 | 1−6.91T+37T2 |
| 41 | 1+6.53iT−41T2 |
| 43 | 1+0.191T+43T2 |
| 47 | 1−0.223iT−47T2 |
| 53 | 1+4.83T+53T2 |
| 59 | 1+5.60iT−59T2 |
| 61 | 1−11.7iT−61T2 |
| 67 | 1+6.23iT−67T2 |
| 71 | 1+12.4T+71T2 |
| 73 | 1+8.27T+73T2 |
| 79 | 1+15.4T+79T2 |
| 83 | 1−2T+83T2 |
| 89 | 1+7.44iT−89T2 |
| 97 | 1−17.6iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.86467238139947487800576822675, −11.74987986945764513651194017499, −10.62619775345373095870098705051, −9.892525981430369545325916941861, −8.952337539001952514743487742608, −7.60493299219672069042240902268, −5.73733287039432734139483405612, −4.53068082412825169969255610087, −3.68925899749569067221896621208, −1.37884138731319244440393907220,
2.79293148298529568667643952077, 4.46323300962751062202782564014, 5.97824227559216108471179333755, 6.78473533674838398708409798546, 7.76863075865256490109849373093, 8.882596223234786853778538277567, 10.11336723477964934869521665060, 11.44660812589026750076984440729, 12.63938654234220350820687296576, 13.22469991580347004574451578416