L(s) = 1 | + (1.17 − 0.792i)2-s + 1.26i·3-s + (0.743 − 1.85i)4-s + 3.51i·5-s + (1 + 1.47i)6-s − 2.23i·7-s + (−0.601 − 2.76i)8-s + 1.40·9-s + (2.78 + 4.12i)10-s + 2.89·11-s + (2.34 + 0.937i)12-s − 6.30·13-s + (−1.77 − 2.61i)14-s − 4.43·15-s + (−2.89 − 2.76i)16-s − 4.79·17-s + ⋯ |
L(s) = 1 | + (0.828 − 0.560i)2-s + 0.728i·3-s + (0.371 − 0.928i)4-s + 1.57i·5-s + (0.408 + 0.603i)6-s − 0.845i·7-s + (−0.212 − 0.977i)8-s + 0.469·9-s + (0.882 + 1.30i)10-s + 0.872·11-s + (0.676 + 0.270i)12-s − 1.74·13-s + (−0.473 − 0.699i)14-s − 1.14·15-s + (−0.723 − 0.690i)16-s − 1.16·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 152 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 - 0.00742i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 152 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.999 - 0.00742i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.69259 + 0.00628203i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.69259 + 0.00628203i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.17 + 0.792i)T \) |
| 19 | \( 1 + (-0.895 + 4.26i)T \) |
good | 3 | \( 1 - 1.26iT - 3T^{2} \) |
| 5 | \( 1 - 3.51iT - 5T^{2} \) |
| 7 | \( 1 + 2.23iT - 7T^{2} \) |
| 11 | \( 1 - 2.89T + 11T^{2} \) |
| 13 | \( 1 + 6.30T + 13T^{2} \) |
| 17 | \( 1 + 4.79T + 17T^{2} \) |
| 23 | \( 1 + 0.524iT - 23T^{2} \) |
| 29 | \( 1 - 0.415T + 29T^{2} \) |
| 31 | \( 1 - 1.20T + 31T^{2} \) |
| 37 | \( 1 - 5.88T + 37T^{2} \) |
| 41 | \( 1 - 4.87iT - 41T^{2} \) |
| 43 | \( 1 + 10.6T + 43T^{2} \) |
| 47 | \( 1 + 4.27iT - 47T^{2} \) |
| 53 | \( 1 - 6.05T + 53T^{2} \) |
| 59 | \( 1 + 8.08iT - 59T^{2} \) |
| 61 | \( 1 - 8.38iT - 61T^{2} \) |
| 67 | \( 1 - 9.79iT - 67T^{2} \) |
| 71 | \( 1 - 10.2T + 71T^{2} \) |
| 73 | \( 1 - 7.76T + 73T^{2} \) |
| 79 | \( 1 + 7.33T + 79T^{2} \) |
| 83 | \( 1 - 2T + 83T^{2} \) |
| 89 | \( 1 - 12.1iT - 89T^{2} \) |
| 97 | \( 1 + 2.19iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.14462850675538789688551154582, −11.74203368274968186935728059604, −10.99083382043444719162600933526, −10.15549384259909853588677396030, −9.560610797848217401175824163095, −7.09840289472504744007593242374, −6.72230089693255330090973792315, −4.80788758680666564587646636720, −3.87456427252729340573779285553, −2.56031094997546536249620810375,
2.05344631968229969942982782198, 4.30693357454120374388475122856, 5.22026986713213091880322157099, 6.45764449576966844874723350908, 7.61587160948123993200056348692, 8.616764249550777714323104156174, 9.582095765145775153227139495626, 11.79783632444781162566417866936, 12.27453423792831390391718966579, 12.83776245530726145310363963597