Properties

Label 2-152-1.1-c7-0-26
Degree $2$
Conductor $152$
Sign $-1$
Analytic cond. $47.4825$
Root an. cond. $6.89075$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 42.3·3-s − 290.·5-s + 951.·7-s − 393.·9-s − 1.38e3·11-s − 1.44e3·13-s − 1.23e4·15-s + 1.74e4·17-s − 6.85e3·19-s + 4.02e4·21-s − 3.83e4·23-s + 6.53e3·25-s − 1.09e5·27-s − 1.82e4·29-s − 1.41e5·31-s − 5.87e4·33-s − 2.76e5·35-s − 7.79e4·37-s − 6.13e4·39-s − 1.81e5·41-s − 3.62e5·43-s + 1.14e5·45-s − 2.80e5·47-s + 8.18e4·49-s + 7.38e5·51-s + 7.00e5·53-s + 4.03e5·55-s + ⋯
L(s)  = 1  + 0.905·3-s − 1.04·5-s + 1.04·7-s − 0.179·9-s − 0.314·11-s − 0.183·13-s − 0.942·15-s + 0.860·17-s − 0.229·19-s + 0.949·21-s − 0.656·23-s + 0.0836·25-s − 1.06·27-s − 0.139·29-s − 0.854·31-s − 0.284·33-s − 1.09·35-s − 0.253·37-s − 0.165·39-s − 0.410·41-s − 0.695·43-s + 0.187·45-s − 0.394·47-s + 0.0993·49-s + 0.779·51-s + 0.646·53-s + 0.327·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 152 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 152 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(152\)    =    \(2^{3} \cdot 19\)
Sign: $-1$
Analytic conductor: \(47.4825\)
Root analytic conductor: \(6.89075\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 152,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
19 \( 1 + 6.85e3T \)
good3 \( 1 - 42.3T + 2.18e3T^{2} \)
5 \( 1 + 290.T + 7.81e4T^{2} \)
7 \( 1 - 951.T + 8.23e5T^{2} \)
11 \( 1 + 1.38e3T + 1.94e7T^{2} \)
13 \( 1 + 1.44e3T + 6.27e7T^{2} \)
17 \( 1 - 1.74e4T + 4.10e8T^{2} \)
23 \( 1 + 3.83e4T + 3.40e9T^{2} \)
29 \( 1 + 1.82e4T + 1.72e10T^{2} \)
31 \( 1 + 1.41e5T + 2.75e10T^{2} \)
37 \( 1 + 7.79e4T + 9.49e10T^{2} \)
41 \( 1 + 1.81e5T + 1.94e11T^{2} \)
43 \( 1 + 3.62e5T + 2.71e11T^{2} \)
47 \( 1 + 2.80e5T + 5.06e11T^{2} \)
53 \( 1 - 7.00e5T + 1.17e12T^{2} \)
59 \( 1 - 7.01e5T + 2.48e12T^{2} \)
61 \( 1 - 1.06e4T + 3.14e12T^{2} \)
67 \( 1 + 6.78e5T + 6.06e12T^{2} \)
71 \( 1 + 3.12e6T + 9.09e12T^{2} \)
73 \( 1 + 6.01e6T + 1.10e13T^{2} \)
79 \( 1 + 7.03e6T + 1.92e13T^{2} \)
83 \( 1 + 2.57e6T + 2.71e13T^{2} \)
89 \( 1 - 2.58e6T + 4.42e13T^{2} \)
97 \( 1 + 6.37e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.34796343883995952398940603540, −10.12046283791803100618874282901, −8.748924811800915520017437085823, −8.047044815524387651760357688514, −7.38591532731778299723793199083, −5.53092564911765801729465344731, −4.22578988581419290625039833502, −3.15237535186046106405481313361, −1.76564671840849973152821943236, 0, 1.76564671840849973152821943236, 3.15237535186046106405481313361, 4.22578988581419290625039833502, 5.53092564911765801729465344731, 7.38591532731778299723793199083, 8.047044815524387651760357688514, 8.748924811800915520017437085823, 10.12046283791803100618874282901, 11.34796343883995952398940603540

Graph of the $Z$-function along the critical line