L(s) = 1 | + 4·3-s + 2·5-s + 4·7-s + 8·9-s + 4·11-s − 4·13-s + 8·15-s − 4·17-s + 2·19-s + 16·21-s + 12·23-s + 3·25-s + 12·27-s + 4·29-s + 8·31-s + 16·33-s + 8·35-s − 12·37-s − 16·39-s − 4·41-s − 4·43-s + 16·45-s + 4·47-s + 6·49-s − 16·51-s + 4·53-s + 8·55-s + ⋯ |
L(s) = 1 | + 2.30·3-s + 0.894·5-s + 1.51·7-s + 8/3·9-s + 1.20·11-s − 1.10·13-s + 2.06·15-s − 0.970·17-s + 0.458·19-s + 3.49·21-s + 2.50·23-s + 3/5·25-s + 2.30·27-s + 0.742·29-s + 1.43·31-s + 2.78·33-s + 1.35·35-s − 1.97·37-s − 2.56·39-s − 0.624·41-s − 0.609·43-s + 2.38·45-s + 0.583·47-s + 6/7·49-s − 2.24·51-s + 0.549·53-s + 1.07·55-s + ⋯ |
Λ(s)=(=(2310400s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(2310400s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
2310400
= 28⋅52⋅192
|
Sign: |
1
|
Analytic conductor: |
147.313 |
Root analytic conductor: |
3.48385 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 2310400, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
9.325469940 |
L(21) |
≈ |
9.325469940 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | C1 | (1−T)2 |
| 19 | C1 | (1−T)2 |
good | 3 | C22 | 1−4T+8T2−4pT3+p2T4 |
| 7 | C4 | 1−4T+10T2−4pT3+p2T4 |
| 11 | C2 | (1−2T+pT2)2 |
| 13 | D4 | 1+4T+12T2+4pT3+p2T4 |
| 17 | D4 | 1+4T+30T2+4pT3+p2T4 |
| 23 | C2 | (1−6T+pT2)2 |
| 29 | D4 | 1−4T−10T2−4pT3+p2T4 |
| 31 | D4 | 1−8T+70T2−8pT3+p2T4 |
| 37 | D4 | 1+12T+92T2+12pT3+p2T4 |
| 41 | D4 | 1+4T+54T2+4pT3+p2T4 |
| 43 | D4 | 1+4T+82T2+4pT3+p2T4 |
| 47 | D4 | 1−4T+90T2−4pT3+p2T4 |
| 53 | D4 | 1−4T+60T2−4pT3+p2T4 |
| 59 | D4 | 1+16T+150T2+16pT3+p2T4 |
| 61 | D4 | 1+16T+154T2+16pT3+p2T4 |
| 67 | D4 | 1−4T+136T2−4pT3+p2T4 |
| 71 | D4 | 1+16T+198T2+16pT3+p2T4 |
| 73 | D4 | 1−12T+110T2−12pT3+p2T4 |
| 79 | D4 | 1−8T+142T2−8pT3+p2T4 |
| 83 | D4 | 1−4T+42T2−4pT3+p2T4 |
| 89 | D4 | 1−4T+110T2−4pT3+p2T4 |
| 97 | D4 | 1+12T+212T2+12pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.373346786878501293642312781848, −9.126219677021526773619159829210, −8.889932070403171249287295323269, −8.631701213045925488478188799566, −8.181895377243302681506538839004, −7.83667600992098535447578319865, −7.30155095873499276115561178340, −7.04007419226724166778727163224, −6.55523169887341825854139924299, −6.23951813168676526941690728695, −5.13237721787974012480990535454, −5.07443515478179354900070296507, −4.64366623492648899300369469242, −4.22125217468796483542276910683, −3.35359836181160138157132269303, −3.14706206559333232854953325503, −2.55556377588078431300180226095, −2.22346747470726762631896537131, −1.48431367344935190912877200754, −1.26019537507612455551548251757,
1.26019537507612455551548251757, 1.48431367344935190912877200754, 2.22346747470726762631896537131, 2.55556377588078431300180226095, 3.14706206559333232854953325503, 3.35359836181160138157132269303, 4.22125217468796483542276910683, 4.64366623492648899300369469242, 5.07443515478179354900070296507, 5.13237721787974012480990535454, 6.23951813168676526941690728695, 6.55523169887341825854139924299, 7.04007419226724166778727163224, 7.30155095873499276115561178340, 7.83667600992098535447578319865, 8.181895377243302681506538839004, 8.631701213045925488478188799566, 8.889932070403171249287295323269, 9.126219677021526773619159829210, 9.373346786878501293642312781848