Properties

Label 4-1520e2-1.1-c1e2-0-26
Degree $4$
Conductor $2310400$
Sign $1$
Analytic cond. $147.313$
Root an. cond. $3.48385$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·3-s + 2·5-s + 4·7-s + 8·9-s + 4·11-s − 4·13-s + 8·15-s − 4·17-s + 2·19-s + 16·21-s + 12·23-s + 3·25-s + 12·27-s + 4·29-s + 8·31-s + 16·33-s + 8·35-s − 12·37-s − 16·39-s − 4·41-s − 4·43-s + 16·45-s + 4·47-s + 6·49-s − 16·51-s + 4·53-s + 8·55-s + ⋯
L(s)  = 1  + 2.30·3-s + 0.894·5-s + 1.51·7-s + 8/3·9-s + 1.20·11-s − 1.10·13-s + 2.06·15-s − 0.970·17-s + 0.458·19-s + 3.49·21-s + 2.50·23-s + 3/5·25-s + 2.30·27-s + 0.742·29-s + 1.43·31-s + 2.78·33-s + 1.35·35-s − 1.97·37-s − 2.56·39-s − 0.624·41-s − 0.609·43-s + 2.38·45-s + 0.583·47-s + 6/7·49-s − 2.24·51-s + 0.549·53-s + 1.07·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2310400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2310400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(2310400\)    =    \(2^{8} \cdot 5^{2} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(147.313\)
Root analytic conductor: \(3.48385\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 2310400,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(9.325469940\)
\(L(\frac12)\) \(\approx\) \(9.325469940\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_1$ \( ( 1 - T )^{2} \)
19$C_1$ \( ( 1 - T )^{2} \)
good3$C_2^2$ \( 1 - 4 T + 8 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
7$C_4$ \( 1 - 4 T + 10 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
11$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
13$D_{4}$ \( 1 + 4 T + 12 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
17$D_{4}$ \( 1 + 4 T + 30 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
23$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
29$D_{4}$ \( 1 - 4 T - 10 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
31$D_{4}$ \( 1 - 8 T + 70 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
37$D_{4}$ \( 1 + 12 T + 92 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
41$D_{4}$ \( 1 + 4 T + 54 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 + 4 T + 82 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
47$D_{4}$ \( 1 - 4 T + 90 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
53$D_{4}$ \( 1 - 4 T + 60 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 + 16 T + 150 T^{2} + 16 p T^{3} + p^{2} T^{4} \)
61$D_{4}$ \( 1 + 16 T + 154 T^{2} + 16 p T^{3} + p^{2} T^{4} \)
67$D_{4}$ \( 1 - 4 T + 136 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
71$D_{4}$ \( 1 + 16 T + 198 T^{2} + 16 p T^{3} + p^{2} T^{4} \)
73$D_{4}$ \( 1 - 12 T + 110 T^{2} - 12 p T^{3} + p^{2} T^{4} \)
79$D_{4}$ \( 1 - 8 T + 142 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 - 4 T + 42 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
89$D_{4}$ \( 1 - 4 T + 110 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 + 12 T + 212 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.373346786878501293642312781848, −9.126219677021526773619159829210, −8.889932070403171249287295323269, −8.631701213045925488478188799566, −8.181895377243302681506538839004, −7.83667600992098535447578319865, −7.30155095873499276115561178340, −7.04007419226724166778727163224, −6.55523169887341825854139924299, −6.23951813168676526941690728695, −5.13237721787974012480990535454, −5.07443515478179354900070296507, −4.64366623492648899300369469242, −4.22125217468796483542276910683, −3.35359836181160138157132269303, −3.14706206559333232854953325503, −2.55556377588078431300180226095, −2.22346747470726762631896537131, −1.48431367344935190912877200754, −1.26019537507612455551548251757, 1.26019537507612455551548251757, 1.48431367344935190912877200754, 2.22346747470726762631896537131, 2.55556377588078431300180226095, 3.14706206559333232854953325503, 3.35359836181160138157132269303, 4.22125217468796483542276910683, 4.64366623492648899300369469242, 5.07443515478179354900070296507, 5.13237721787974012480990535454, 6.23951813168676526941690728695, 6.55523169887341825854139924299, 7.04007419226724166778727163224, 7.30155095873499276115561178340, 7.83667600992098535447578319865, 8.181895377243302681506538839004, 8.631701213045925488478188799566, 8.889932070403171249287295323269, 9.126219677021526773619159829210, 9.373346786878501293642312781848

Graph of the $Z$-function along the critical line