L(s) = 1 | + (−1.36 + 0.366i)2-s + (0.866 − 0.5i)4-s + (−1 − i)5-s + (1.73 + i)10-s + (0.366 + 1.36i)11-s + (−0.499 + 0.866i)16-s + (−1.36 − 0.366i)20-s + (−1 − 1.73i)22-s + i·25-s + (0.366 − 1.36i)32-s + (1.36 − 0.366i)41-s + (1.73 − i)43-s + (1 + 0.999i)44-s + (1 − i)47-s + (−0.866 − 0.5i)49-s + (−0.366 − 1.36i)50-s + ⋯ |
L(s) = 1 | + (−1.36 + 0.366i)2-s + (0.866 − 0.5i)4-s + (−1 − i)5-s + (1.73 + i)10-s + (0.366 + 1.36i)11-s + (−0.499 + 0.866i)16-s + (−1.36 − 0.366i)20-s + (−1 − 1.73i)22-s + i·25-s + (0.366 − 1.36i)32-s + (1.36 − 0.366i)41-s + (1.73 − i)43-s + (1 + 0.999i)44-s + (1 − i)47-s + (−0.866 − 0.5i)49-s + (−0.366 − 1.36i)50-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1521 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0386i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1521 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0386i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4413868228\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4413868228\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (1.36 - 0.366i)T + (0.866 - 0.5i)T^{2} \) |
| 5 | \( 1 + (1 + i)T + iT^{2} \) |
| 7 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 11 | \( 1 + (-0.366 - 1.36i)T + (-0.866 + 0.5i)T^{2} \) |
| 17 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 23 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + iT^{2} \) |
| 37 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 41 | \( 1 + (-1.36 + 0.366i)T + (0.866 - 0.5i)T^{2} \) |
| 43 | \( 1 + (-1.73 + i)T + (0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + (-1 + i)T - iT^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 + (-1.36 - 0.366i)T + (0.866 + 0.5i)T^{2} \) |
| 61 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 71 | \( 1 + (0.366 - 1.36i)T + (-0.866 - 0.5i)T^{2} \) |
| 73 | \( 1 - iT^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 + (-1 - i)T + iT^{2} \) |
| 89 | \( 1 + (0.366 + 1.36i)T + (-0.866 + 0.5i)T^{2} \) |
| 97 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.433887188630957730582729891218, −8.806668342244214125187169839931, −8.195991541986127494232348791197, −7.36161599127269745674835161000, −6.99422507541652918191920193203, −5.65189500314977577782628096744, −4.47262492310976724208332708394, −3.96832653364552590580840849863, −2.10151424966125618268324803474, −0.824396872911944168976828545014,
0.910976812824809821657976240477, 2.54243219611971349729838532073, 3.35961610706580435650370450950, 4.39267900832395775358801435636, 5.84994662107991887093620573936, 6.71747595334367771324026584177, 7.69403531890582378433062542675, 7.985696200793325042684205832657, 8.972028883293363817145065015291, 9.517621805985242699266950205914