L(s) = 1 | + (−1.36 + 0.366i)2-s + (0.866 − 0.5i)4-s + (−1 − i)5-s + (1.73 + i)10-s + (0.366 + 1.36i)11-s + (−0.499 + 0.866i)16-s + (−1.36 − 0.366i)20-s + (−1 − 1.73i)22-s + i·25-s + (0.366 − 1.36i)32-s + (1.36 − 0.366i)41-s + (1.73 − i)43-s + (1 + 0.999i)44-s + (1 − i)47-s + (−0.866 − 0.5i)49-s + (−0.366 − 1.36i)50-s + ⋯ |
L(s) = 1 | + (−1.36 + 0.366i)2-s + (0.866 − 0.5i)4-s + (−1 − i)5-s + (1.73 + i)10-s + (0.366 + 1.36i)11-s + (−0.499 + 0.866i)16-s + (−1.36 − 0.366i)20-s + (−1 − 1.73i)22-s + i·25-s + (0.366 − 1.36i)32-s + (1.36 − 0.366i)41-s + (1.73 − i)43-s + (1 + 0.999i)44-s + (1 − i)47-s + (−0.866 − 0.5i)49-s + (−0.366 − 1.36i)50-s + ⋯ |
Λ(s)=(=(1521s/2ΓC(s)L(s)(0.999+0.0386i)Λ(1−s)
Λ(s)=(=(1521s/2ΓC(s)L(s)(0.999+0.0386i)Λ(1−s)
Degree: |
2 |
Conductor: |
1521
= 32⋅132
|
Sign: |
0.999+0.0386i
|
Analytic conductor: |
0.759077 |
Root analytic conductor: |
0.871250 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1521(1333,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1521, ( :0), 0.999+0.0386i)
|
Particular Values
L(21) |
≈ |
0.4413868228 |
L(21) |
≈ |
0.4413868228 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 13 | 1 |
good | 2 | 1+(1.36−0.366i)T+(0.866−0.5i)T2 |
| 5 | 1+(1+i)T+iT2 |
| 7 | 1+(0.866+0.5i)T2 |
| 11 | 1+(−0.366−1.36i)T+(−0.866+0.5i)T2 |
| 17 | 1+(0.5−0.866i)T2 |
| 19 | 1+(−0.866−0.5i)T2 |
| 23 | 1+(0.5+0.866i)T2 |
| 29 | 1+(−0.5−0.866i)T2 |
| 31 | 1+iT2 |
| 37 | 1+(−0.866+0.5i)T2 |
| 41 | 1+(−1.36+0.366i)T+(0.866−0.5i)T2 |
| 43 | 1+(−1.73+i)T+(0.5−0.866i)T2 |
| 47 | 1+(−1+i)T−iT2 |
| 53 | 1+T2 |
| 59 | 1+(−1.36−0.366i)T+(0.866+0.5i)T2 |
| 61 | 1+(−0.5+0.866i)T2 |
| 67 | 1+(0.866−0.5i)T2 |
| 71 | 1+(0.366−1.36i)T+(−0.866−0.5i)T2 |
| 73 | 1−iT2 |
| 79 | 1+T2 |
| 83 | 1+(−1−i)T+iT2 |
| 89 | 1+(0.366+1.36i)T+(−0.866+0.5i)T2 |
| 97 | 1+(−0.866−0.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.433887188630957730582729891218, −8.806668342244214125187169839931, −8.195991541986127494232348791197, −7.36161599127269745674835161000, −6.99422507541652918191920193203, −5.65189500314977577782628096744, −4.47262492310976724208332708394, −3.96832653364552590580840849863, −2.10151424966125618268324803474, −0.824396872911944168976828545014,
0.910976812824809821657976240477, 2.54243219611971349729838532073, 3.35961610706580435650370450950, 4.39267900832395775358801435636, 5.84994662107991887093620573936, 6.71747595334367771324026584177, 7.69403531890582378433062542675, 7.985696200793325042684205832657, 8.972028883293363817145065015291, 9.517621805985242699266950205914