Properties

Label 2-39e2-1.1-c3-0-118
Degree $2$
Conductor $1521$
Sign $-1$
Analytic cond. $89.7419$
Root an. cond. $9.47322$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.56·2-s + 12.8·4-s + 2.80·5-s − 9.56·7-s − 21.9·8-s − 12.8·10-s + 39.4·11-s + 43.6·14-s − 2.42·16-s − 2.01·17-s + 60.1·19-s + 35.9·20-s − 179.·22-s − 4.46·23-s − 117.·25-s − 122.·28-s − 140.·29-s − 136.·31-s + 186.·32-s + 9.19·34-s − 26.8·35-s + 185.·37-s − 274.·38-s − 61.5·40-s + 310.·41-s + 427.·43-s + 504.·44-s + ⋯
L(s)  = 1  − 1.61·2-s + 1.60·4-s + 0.251·5-s − 0.516·7-s − 0.969·8-s − 0.405·10-s + 1.08·11-s + 0.832·14-s − 0.0378·16-s − 0.0287·17-s + 0.726·19-s + 0.402·20-s − 1.74·22-s − 0.0405·23-s − 0.936·25-s − 0.826·28-s − 0.900·29-s − 0.788·31-s + 1.03·32-s + 0.0463·34-s − 0.129·35-s + 0.825·37-s − 1.17·38-s − 0.243·40-s + 1.18·41-s + 1.51·43-s + 1.73·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1521 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1521 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1521\)    =    \(3^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(89.7419\)
Root analytic conductor: \(9.47322\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1521,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
13 \( 1 \)
good2 \( 1 + 4.56T + 8T^{2} \)
5 \( 1 - 2.80T + 125T^{2} \)
7 \( 1 + 9.56T + 343T^{2} \)
11 \( 1 - 39.4T + 1.33e3T^{2} \)
17 \( 1 + 2.01T + 4.91e3T^{2} \)
19 \( 1 - 60.1T + 6.85e3T^{2} \)
23 \( 1 + 4.46T + 1.21e4T^{2} \)
29 \( 1 + 140.T + 2.43e4T^{2} \)
31 \( 1 + 136.T + 2.97e4T^{2} \)
37 \( 1 - 185.T + 5.06e4T^{2} \)
41 \( 1 - 310.T + 6.89e4T^{2} \)
43 \( 1 - 427.T + 7.95e4T^{2} \)
47 \( 1 + 258.T + 1.03e5T^{2} \)
53 \( 1 + 612.T + 1.48e5T^{2} \)
59 \( 1 + 517.T + 2.05e5T^{2} \)
61 \( 1 + 161.T + 2.26e5T^{2} \)
67 \( 1 - 49.8T + 3.00e5T^{2} \)
71 \( 1 - 279.T + 3.57e5T^{2} \)
73 \( 1 + 467.T + 3.89e5T^{2} \)
79 \( 1 - 37.5T + 4.93e5T^{2} \)
83 \( 1 + 76.1T + 5.71e5T^{2} \)
89 \( 1 - 202.T + 7.04e5T^{2} \)
97 \( 1 - 1.17e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.028846860301285114815939076465, −7.895243051377449855482698446461, −7.40662131209223513604549297313, −6.45576384966031824968973947886, −5.82723221069999670170110774503, −4.37589210240560850595647254091, −3.25886754824020089737239112160, −2.03329052862266446654586087612, −1.14480537131054448136326617302, 0, 1.14480537131054448136326617302, 2.03329052862266446654586087612, 3.25886754824020089737239112160, 4.37589210240560850595647254091, 5.82723221069999670170110774503, 6.45576384966031824968973947886, 7.40662131209223513604549297313, 7.895243051377449855482698446461, 9.028846860301285114815939076465

Graph of the $Z$-function along the critical line