Properties

Label 2-153-153.113-c1-0-12
Degree $2$
Conductor $153$
Sign $-0.253 + 0.967i$
Analytic cond. $1.22171$
Root an. cond. $1.10531$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.801 + 0.105i)2-s + (1.57 − 0.719i)3-s + (−1.30 + 0.348i)4-s + (−1.37 − 2.79i)5-s + (−1.18 + 0.742i)6-s + (−4.52 − 2.23i)7-s + (2.49 − 1.03i)8-s + (1.96 − 2.26i)9-s + (1.39 + 2.09i)10-s + (0.780 − 0.265i)11-s + (−1.79 + 1.48i)12-s + (1.16 + 4.35i)13-s + (3.86 + 1.31i)14-s + (−4.17 − 3.40i)15-s + (0.439 − 0.253i)16-s + (3.78 − 1.62i)17-s + ⋯
L(s)  = 1  + (−0.566 + 0.0745i)2-s + (0.909 − 0.415i)3-s + (−0.650 + 0.174i)4-s + (−0.615 − 1.24i)5-s + (−0.484 + 0.303i)6-s + (−1.71 − 0.843i)7-s + (0.883 − 0.365i)8-s + (0.655 − 0.755i)9-s + (0.442 + 0.661i)10-s + (0.235 − 0.0799i)11-s + (−0.519 + 0.428i)12-s + (0.323 + 1.20i)13-s + (1.03 + 0.350i)14-s + (−1.07 − 0.880i)15-s + (0.109 − 0.0634i)16-s + (0.918 − 0.394i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 153 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.253 + 0.967i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 153 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.253 + 0.967i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(153\)    =    \(3^{2} \cdot 17\)
Sign: $-0.253 + 0.967i$
Analytic conductor: \(1.22171\)
Root analytic conductor: \(1.10531\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{153} (113, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 153,\ (\ :1/2),\ -0.253 + 0.967i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.433494 - 0.561774i\)
\(L(\frac12)\) \(\approx\) \(0.433494 - 0.561774i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-1.57 + 0.719i)T \)
17 \( 1 + (-3.78 + 1.62i)T \)
good2 \( 1 + (0.801 - 0.105i)T + (1.93 - 0.517i)T^{2} \)
5 \( 1 + (1.37 + 2.79i)T + (-3.04 + 3.96i)T^{2} \)
7 \( 1 + (4.52 + 2.23i)T + (4.26 + 5.55i)T^{2} \)
11 \( 1 + (-0.780 + 0.265i)T + (8.72 - 6.69i)T^{2} \)
13 \( 1 + (-1.16 - 4.35i)T + (-11.2 + 6.5i)T^{2} \)
19 \( 1 + (1.95 + 0.811i)T + (13.4 + 13.4i)T^{2} \)
23 \( 1 + (-2.61 + 2.98i)T + (-3.00 - 22.8i)T^{2} \)
29 \( 1 + (0.0274 - 0.418i)T + (-28.7 - 3.78i)T^{2} \)
31 \( 1 + (-0.426 + 1.25i)T + (-24.5 - 18.8i)T^{2} \)
37 \( 1 + (-0.0132 - 0.0664i)T + (-34.1 + 14.1i)T^{2} \)
41 \( 1 + (3.37 - 0.221i)T + (40.6 - 5.35i)T^{2} \)
43 \( 1 + (-5.74 - 4.40i)T + (11.1 + 41.5i)T^{2} \)
47 \( 1 + (-1.39 + 5.19i)T + (-40.7 - 23.5i)T^{2} \)
53 \( 1 + (-2.70 + 6.52i)T + (-37.4 - 37.4i)T^{2} \)
59 \( 1 + (0.445 - 3.38i)T + (-56.9 - 15.2i)T^{2} \)
61 \( 1 + (-0.762 + 1.54i)T + (-37.1 - 48.3i)T^{2} \)
67 \( 1 + (1.90 + 1.10i)T + (33.5 + 58.0i)T^{2} \)
71 \( 1 + (2.14 - 0.426i)T + (65.5 - 27.1i)T^{2} \)
73 \( 1 + (-4.79 - 3.20i)T + (27.9 + 67.4i)T^{2} \)
79 \( 1 + (4.25 + 12.5i)T + (-62.6 + 48.0i)T^{2} \)
83 \( 1 + (0.479 + 3.64i)T + (-80.1 + 21.4i)T^{2} \)
89 \( 1 + (3.26 - 3.26i)T - 89iT^{2} \)
97 \( 1 + (-17.3 - 1.13i)T + (96.1 + 12.6i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.93350414700559267097046782507, −12.07502844727960414080991217358, −10.14954012011888537517577418568, −9.251663720603465019051831464120, −8.778367747398176203087437004402, −7.63192594678361177680063111492, −6.66360676366364220867028988226, −4.41312452235218146017256165881, −3.56596897233861041543756300222, −0.809196702738645643404852072570, 2.93884789598199690760220663709, 3.72629409301597353209936890430, 5.74635690537699758380372905212, 7.21796951779256621287709375883, 8.276194188956415522531295274280, 9.278533092660252049869840102174, 10.08995055018183252078846437065, 10.73643953059534397890872881791, 12.45990676187703832805807467431, 13.30508488415132205311310052057

Graph of the $Z$-function along the critical line