L(s) = 1 | + (−0.801 + 0.105i)2-s + (1.57 − 0.719i)3-s + (−1.30 + 0.348i)4-s + (−1.37 − 2.79i)5-s + (−1.18 + 0.742i)6-s + (−4.52 − 2.23i)7-s + (2.49 − 1.03i)8-s + (1.96 − 2.26i)9-s + (1.39 + 2.09i)10-s + (0.780 − 0.265i)11-s + (−1.79 + 1.48i)12-s + (1.16 + 4.35i)13-s + (3.86 + 1.31i)14-s + (−4.17 − 3.40i)15-s + (0.439 − 0.253i)16-s + (3.78 − 1.62i)17-s + ⋯ |
L(s) = 1 | + (−0.566 + 0.0745i)2-s + (0.909 − 0.415i)3-s + (−0.650 + 0.174i)4-s + (−0.615 − 1.24i)5-s + (−0.484 + 0.303i)6-s + (−1.71 − 0.843i)7-s + (0.883 − 0.365i)8-s + (0.655 − 0.755i)9-s + (0.442 + 0.661i)10-s + (0.235 − 0.0799i)11-s + (−0.519 + 0.428i)12-s + (0.323 + 1.20i)13-s + (1.03 + 0.350i)14-s + (−1.07 − 0.880i)15-s + (0.109 − 0.0634i)16-s + (0.918 − 0.394i)17-s + ⋯ |
Λ(s)=(=(153s/2ΓC(s)L(s)(−0.253+0.967i)Λ(2−s)
Λ(s)=(=(153s/2ΓC(s+1/2)L(s)(−0.253+0.967i)Λ(1−s)
Degree: |
2 |
Conductor: |
153
= 32⋅17
|
Sign: |
−0.253+0.967i
|
Analytic conductor: |
1.22171 |
Root analytic conductor: |
1.10531 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ153(113,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 153, ( :1/2), −0.253+0.967i)
|
Particular Values
L(1) |
≈ |
0.433494−0.561774i |
L(21) |
≈ |
0.433494−0.561774i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−1.57+0.719i)T |
| 17 | 1+(−3.78+1.62i)T |
good | 2 | 1+(0.801−0.105i)T+(1.93−0.517i)T2 |
| 5 | 1+(1.37+2.79i)T+(−3.04+3.96i)T2 |
| 7 | 1+(4.52+2.23i)T+(4.26+5.55i)T2 |
| 11 | 1+(−0.780+0.265i)T+(8.72−6.69i)T2 |
| 13 | 1+(−1.16−4.35i)T+(−11.2+6.5i)T2 |
| 19 | 1+(1.95+0.811i)T+(13.4+13.4i)T2 |
| 23 | 1+(−2.61+2.98i)T+(−3.00−22.8i)T2 |
| 29 | 1+(0.0274−0.418i)T+(−28.7−3.78i)T2 |
| 31 | 1+(−0.426+1.25i)T+(−24.5−18.8i)T2 |
| 37 | 1+(−0.0132−0.0664i)T+(−34.1+14.1i)T2 |
| 41 | 1+(3.37−0.221i)T+(40.6−5.35i)T2 |
| 43 | 1+(−5.74−4.40i)T+(11.1+41.5i)T2 |
| 47 | 1+(−1.39+5.19i)T+(−40.7−23.5i)T2 |
| 53 | 1+(−2.70+6.52i)T+(−37.4−37.4i)T2 |
| 59 | 1+(0.445−3.38i)T+(−56.9−15.2i)T2 |
| 61 | 1+(−0.762+1.54i)T+(−37.1−48.3i)T2 |
| 67 | 1+(1.90+1.10i)T+(33.5+58.0i)T2 |
| 71 | 1+(2.14−0.426i)T+(65.5−27.1i)T2 |
| 73 | 1+(−4.79−3.20i)T+(27.9+67.4i)T2 |
| 79 | 1+(4.25+12.5i)T+(−62.6+48.0i)T2 |
| 83 | 1+(0.479+3.64i)T+(−80.1+21.4i)T2 |
| 89 | 1+(3.26−3.26i)T−89iT2 |
| 97 | 1+(−17.3−1.13i)T+(96.1+12.6i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.93350414700559267097046782507, −12.07502844727960414080991217358, −10.14954012011888537517577418568, −9.251663720603465019051831464120, −8.778367747398176203087437004402, −7.63192594678361177680063111492, −6.66360676366364220867028988226, −4.41312452235218146017256165881, −3.56596897233861041543756300222, −0.809196702738645643404852072570,
2.93884789598199690760220663709, 3.72629409301597353209936890430, 5.74635690537699758380372905212, 7.21796951779256621287709375883, 8.276194188956415522531295274280, 9.278533092660252049869840102174, 10.08995055018183252078846437065, 10.73643953059534397890872881791, 12.45990676187703832805807467431, 13.30508488415132205311310052057