L(s) = 1 | − 4.75·2-s + 14.6·4-s + 7.65·5-s − 31.5·7-s − 31.6·8-s − 36.4·10-s + 7.18·11-s + 84.3·13-s + 150.·14-s + 33.5·16-s − 17·17-s − 37.0·19-s + 112.·20-s − 34.2·22-s − 150.·23-s − 66.3·25-s − 401.·26-s − 462.·28-s + 11.5·29-s − 53.2·31-s + 93.7·32-s + 80.9·34-s − 241.·35-s − 99.2·37-s + 176.·38-s − 242.·40-s − 118.·41-s + ⋯ |
L(s) = 1 | − 1.68·2-s + 1.83·4-s + 0.684·5-s − 1.70·7-s − 1.40·8-s − 1.15·10-s + 0.197·11-s + 1.79·13-s + 2.87·14-s + 0.524·16-s − 0.242·17-s − 0.447·19-s + 1.25·20-s − 0.331·22-s − 1.36·23-s − 0.531·25-s − 3.02·26-s − 3.12·28-s + 0.0741·29-s − 0.308·31-s + 0.517·32-s + 0.408·34-s − 1.16·35-s − 0.440·37-s + 0.753·38-s − 0.958·40-s − 0.450·41-s + ⋯ |
Λ(s)=(=(153s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(153s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 17 | 1+17T |
good | 2 | 1+4.75T+8T2 |
| 5 | 1−7.65T+125T2 |
| 7 | 1+31.5T+343T2 |
| 11 | 1−7.18T+1.33e3T2 |
| 13 | 1−84.3T+2.19e3T2 |
| 19 | 1+37.0T+6.85e3T2 |
| 23 | 1+150.T+1.21e4T2 |
| 29 | 1−11.5T+2.43e4T2 |
| 31 | 1+53.2T+2.97e4T2 |
| 37 | 1+99.2T+5.06e4T2 |
| 41 | 1+118.T+6.89e4T2 |
| 43 | 1+456.T+7.95e4T2 |
| 47 | 1+571.T+1.03e5T2 |
| 53 | 1+462.T+1.48e5T2 |
| 59 | 1+48.0T+2.05e5T2 |
| 61 | 1−59.5T+2.26e5T2 |
| 67 | 1+740.T+3.00e5T2 |
| 71 | 1−930.T+3.57e5T2 |
| 73 | 1+697.T+3.89e5T2 |
| 79 | 1−1.03e3T+4.93e5T2 |
| 83 | 1−22.2T+5.71e5T2 |
| 89 | 1−369.T+7.04e5T2 |
| 97 | 1−1.13e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.65644661908976076971321866031, −10.50400401685843674619413223268, −9.838401726963965250614617301965, −9.068366168463588903802152142660, −8.142182592671096268013463040669, −6.56917714299354251397802095120, −6.17627826640342648198481797484, −3.47203228415881083087051326614, −1.75646561566549658193007977758, 0,
1.75646561566549658193007977758, 3.47203228415881083087051326614, 6.17627826640342648198481797484, 6.56917714299354251397802095120, 8.142182592671096268013463040669, 9.068366168463588903802152142660, 9.838401726963965250614617301965, 10.50400401685843674619413223268, 11.65644661908976076971321866031