Properties

Label 2-153-1.1-c3-0-10
Degree $2$
Conductor $153$
Sign $-1$
Analytic cond. $9.02729$
Root an. cond. $3.00454$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.75·2-s + 14.6·4-s + 7.65·5-s − 31.5·7-s − 31.6·8-s − 36.4·10-s + 7.18·11-s + 84.3·13-s + 150.·14-s + 33.5·16-s − 17·17-s − 37.0·19-s + 112.·20-s − 34.2·22-s − 150.·23-s − 66.3·25-s − 401.·26-s − 462.·28-s + 11.5·29-s − 53.2·31-s + 93.7·32-s + 80.9·34-s − 241.·35-s − 99.2·37-s + 176.·38-s − 242.·40-s − 118.·41-s + ⋯
L(s)  = 1  − 1.68·2-s + 1.83·4-s + 0.684·5-s − 1.70·7-s − 1.40·8-s − 1.15·10-s + 0.197·11-s + 1.79·13-s + 2.87·14-s + 0.524·16-s − 0.242·17-s − 0.447·19-s + 1.25·20-s − 0.331·22-s − 1.36·23-s − 0.531·25-s − 3.02·26-s − 3.12·28-s + 0.0741·29-s − 0.308·31-s + 0.517·32-s + 0.408·34-s − 1.16·35-s − 0.440·37-s + 0.753·38-s − 0.958·40-s − 0.450·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 153 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 153 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(153\)    =    \(3^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(9.02729\)
Root analytic conductor: \(3.00454\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 153,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
17 \( 1 + 17T \)
good2 \( 1 + 4.75T + 8T^{2} \)
5 \( 1 - 7.65T + 125T^{2} \)
7 \( 1 + 31.5T + 343T^{2} \)
11 \( 1 - 7.18T + 1.33e3T^{2} \)
13 \( 1 - 84.3T + 2.19e3T^{2} \)
19 \( 1 + 37.0T + 6.85e3T^{2} \)
23 \( 1 + 150.T + 1.21e4T^{2} \)
29 \( 1 - 11.5T + 2.43e4T^{2} \)
31 \( 1 + 53.2T + 2.97e4T^{2} \)
37 \( 1 + 99.2T + 5.06e4T^{2} \)
41 \( 1 + 118.T + 6.89e4T^{2} \)
43 \( 1 + 456.T + 7.95e4T^{2} \)
47 \( 1 + 571.T + 1.03e5T^{2} \)
53 \( 1 + 462.T + 1.48e5T^{2} \)
59 \( 1 + 48.0T + 2.05e5T^{2} \)
61 \( 1 - 59.5T + 2.26e5T^{2} \)
67 \( 1 + 740.T + 3.00e5T^{2} \)
71 \( 1 - 930.T + 3.57e5T^{2} \)
73 \( 1 + 697.T + 3.89e5T^{2} \)
79 \( 1 - 1.03e3T + 4.93e5T^{2} \)
83 \( 1 - 22.2T + 5.71e5T^{2} \)
89 \( 1 - 369.T + 7.04e5T^{2} \)
97 \( 1 - 1.13e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.65644661908976076971321866031, −10.50400401685843674619413223268, −9.838401726963965250614617301965, −9.068366168463588903802152142660, −8.142182592671096268013463040669, −6.56917714299354251397802095120, −6.17627826640342648198481797484, −3.47203228415881083087051326614, −1.75646561566549658193007977758, 0, 1.75646561566549658193007977758, 3.47203228415881083087051326614, 6.17627826640342648198481797484, 6.56917714299354251397802095120, 8.142182592671096268013463040669, 9.068366168463588903802152142660, 9.838401726963965250614617301965, 10.50400401685843674619413223268, 11.65644661908976076971321866031

Graph of the $Z$-function along the critical line