L(s) = 1 | + 2.55·2-s − 1.47·4-s − 8.47·5-s + 3.66·7-s − 24.1·8-s − 21.6·10-s − 61.4·11-s + 20.9·13-s + 9.35·14-s − 50.0·16-s − 17·17-s − 102.·19-s + 12.4·20-s − 157.·22-s + 27.1·23-s − 53.2·25-s + 53.6·26-s − 5.38·28-s + 145.·29-s + 72.0·31-s + 65.6·32-s − 43.4·34-s − 31.0·35-s + 371.·37-s − 262.·38-s + 204.·40-s − 348.·41-s + ⋯ |
L(s) = 1 | + 0.903·2-s − 0.183·4-s − 0.757·5-s + 0.197·7-s − 1.06·8-s − 0.684·10-s − 1.68·11-s + 0.447·13-s + 0.178·14-s − 0.782·16-s − 0.242·17-s − 1.24·19-s + 0.139·20-s − 1.52·22-s + 0.246·23-s − 0.425·25-s + 0.404·26-s − 0.0363·28-s + 0.930·29-s + 0.417·31-s + 0.362·32-s − 0.219·34-s − 0.149·35-s + 1.64·37-s − 1.12·38-s + 0.810·40-s − 1.32·41-s + ⋯ |
Λ(s)=(=(153s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(153s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 17 | 1+17T |
good | 2 | 1−2.55T+8T2 |
| 5 | 1+8.47T+125T2 |
| 7 | 1−3.66T+343T2 |
| 11 | 1+61.4T+1.33e3T2 |
| 13 | 1−20.9T+2.19e3T2 |
| 19 | 1+102.T+6.85e3T2 |
| 23 | 1−27.1T+1.21e4T2 |
| 29 | 1−145.T+2.43e4T2 |
| 31 | 1−72.0T+2.97e4T2 |
| 37 | 1−371.T+5.06e4T2 |
| 41 | 1+348.T+6.89e4T2 |
| 43 | 1+246.T+7.95e4T2 |
| 47 | 1−269.T+1.03e5T2 |
| 53 | 1−349.T+1.48e5T2 |
| 59 | 1+78.9T+2.05e5T2 |
| 61 | 1+410.T+2.26e5T2 |
| 67 | 1+493.T+3.00e5T2 |
| 71 | 1+480.T+3.57e5T2 |
| 73 | 1−524.T+3.89e5T2 |
| 79 | 1+189.T+4.93e5T2 |
| 83 | 1−1.04e3T+5.71e5T2 |
| 89 | 1+725.T+7.04e5T2 |
| 97 | 1+1.75e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.23544764524275146374043854873, −11.21163196919064666561215266294, −10.16420266429647573781039250093, −8.644243741732146534086964003420, −7.88229179255241623027027399994, −6.32754042281170777383415357055, −5.08004569547810011465154599049, −4.14971281380827279224524226351, −2.77838577401269894070988374506, 0,
2.77838577401269894070988374506, 4.14971281380827279224524226351, 5.08004569547810011465154599049, 6.32754042281170777383415357055, 7.88229179255241623027027399994, 8.644243741732146534086964003420, 10.16420266429647573781039250093, 11.21163196919064666561215266294, 12.23544764524275146374043854873