Properties

Label 2-153-1.1-c3-0-17
Degree $2$
Conductor $153$
Sign $-1$
Analytic cond. $9.02729$
Root an. cond. $3.00454$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.55·2-s − 1.47·4-s − 8.47·5-s + 3.66·7-s − 24.1·8-s − 21.6·10-s − 61.4·11-s + 20.9·13-s + 9.35·14-s − 50.0·16-s − 17·17-s − 102.·19-s + 12.4·20-s − 157.·22-s + 27.1·23-s − 53.2·25-s + 53.6·26-s − 5.38·28-s + 145.·29-s + 72.0·31-s + 65.6·32-s − 43.4·34-s − 31.0·35-s + 371.·37-s − 262.·38-s + 204.·40-s − 348.·41-s + ⋯
L(s)  = 1  + 0.903·2-s − 0.183·4-s − 0.757·5-s + 0.197·7-s − 1.06·8-s − 0.684·10-s − 1.68·11-s + 0.447·13-s + 0.178·14-s − 0.782·16-s − 0.242·17-s − 1.24·19-s + 0.139·20-s − 1.52·22-s + 0.246·23-s − 0.425·25-s + 0.404·26-s − 0.0363·28-s + 0.930·29-s + 0.417·31-s + 0.362·32-s − 0.219·34-s − 0.149·35-s + 1.64·37-s − 1.12·38-s + 0.810·40-s − 1.32·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 153 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 153 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(153\)    =    \(3^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(9.02729\)
Root analytic conductor: \(3.00454\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 153,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
17 \( 1 + 17T \)
good2 \( 1 - 2.55T + 8T^{2} \)
5 \( 1 + 8.47T + 125T^{2} \)
7 \( 1 - 3.66T + 343T^{2} \)
11 \( 1 + 61.4T + 1.33e3T^{2} \)
13 \( 1 - 20.9T + 2.19e3T^{2} \)
19 \( 1 + 102.T + 6.85e3T^{2} \)
23 \( 1 - 27.1T + 1.21e4T^{2} \)
29 \( 1 - 145.T + 2.43e4T^{2} \)
31 \( 1 - 72.0T + 2.97e4T^{2} \)
37 \( 1 - 371.T + 5.06e4T^{2} \)
41 \( 1 + 348.T + 6.89e4T^{2} \)
43 \( 1 + 246.T + 7.95e4T^{2} \)
47 \( 1 - 269.T + 1.03e5T^{2} \)
53 \( 1 - 349.T + 1.48e5T^{2} \)
59 \( 1 + 78.9T + 2.05e5T^{2} \)
61 \( 1 + 410.T + 2.26e5T^{2} \)
67 \( 1 + 493.T + 3.00e5T^{2} \)
71 \( 1 + 480.T + 3.57e5T^{2} \)
73 \( 1 - 524.T + 3.89e5T^{2} \)
79 \( 1 + 189.T + 4.93e5T^{2} \)
83 \( 1 - 1.04e3T + 5.71e5T^{2} \)
89 \( 1 + 725.T + 7.04e5T^{2} \)
97 \( 1 + 1.75e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.23544764524275146374043854873, −11.21163196919064666561215266294, −10.16420266429647573781039250093, −8.644243741732146534086964003420, −7.88229179255241623027027399994, −6.32754042281170777383415357055, −5.08004569547810011465154599049, −4.14971281380827279224524226351, −2.77838577401269894070988374506, 0, 2.77838577401269894070988374506, 4.14971281380827279224524226351, 5.08004569547810011465154599049, 6.32754042281170777383415357055, 7.88229179255241623027027399994, 8.644243741732146534086964003420, 10.16420266429647573781039250093, 11.21163196919064666561215266294, 12.23544764524275146374043854873

Graph of the $Z$-function along the critical line