L(s) = 1 | − 3.56·2-s + 4.72·4-s + 20.6·5-s − 5.24·7-s + 11.6·8-s − 73.6·10-s + 5.21·11-s − 14.8·13-s + 18.7·14-s − 79.4·16-s − 17·17-s + 26.2·19-s + 97.5·20-s − 18.5·22-s + 165.·23-s + 300.·25-s + 52.8·26-s − 24.7·28-s − 42.3·29-s + 263.·31-s + 190.·32-s + 60.6·34-s − 108.·35-s − 322.·37-s − 93.6·38-s + 240.·40-s + 321.·41-s + ⋯ |
L(s) = 1 | − 1.26·2-s + 0.591·4-s + 1.84·5-s − 0.283·7-s + 0.515·8-s − 2.32·10-s + 0.142·11-s − 0.315·13-s + 0.357·14-s − 1.24·16-s − 0.242·17-s + 0.317·19-s + 1.09·20-s − 0.180·22-s + 1.49·23-s + 2.40·25-s + 0.398·26-s − 0.167·28-s − 0.271·29-s + 1.52·31-s + 1.05·32-s + 0.305·34-s − 0.522·35-s − 1.43·37-s − 0.399·38-s + 0.951·40-s + 1.22·41-s + ⋯ |
Λ(s)=(=(153s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(153s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
1.156750210 |
L(21) |
≈ |
1.156750210 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 17 | 1+17T |
good | 2 | 1+3.56T+8T2 |
| 5 | 1−20.6T+125T2 |
| 7 | 1+5.24T+343T2 |
| 11 | 1−5.21T+1.33e3T2 |
| 13 | 1+14.8T+2.19e3T2 |
| 19 | 1−26.2T+6.85e3T2 |
| 23 | 1−165.T+1.21e4T2 |
| 29 | 1+42.3T+2.43e4T2 |
| 31 | 1−263.T+2.97e4T2 |
| 37 | 1+322.T+5.06e4T2 |
| 41 | 1−321.T+6.89e4T2 |
| 43 | 1−385.T+7.95e4T2 |
| 47 | 1−309.T+1.03e5T2 |
| 53 | 1−192.T+1.48e5T2 |
| 59 | 1+587.T+2.05e5T2 |
| 61 | 1+241.T+2.26e5T2 |
| 67 | 1−205.T+3.00e5T2 |
| 71 | 1−933.T+3.57e5T2 |
| 73 | 1+869.T+3.89e5T2 |
| 79 | 1−102.T+4.93e5T2 |
| 83 | 1−298.T+5.71e5T2 |
| 89 | 1+666.T+7.04e5T2 |
| 97 | 1−1.35e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.61825142944827577183203785288, −10.97289370472511688948647731685, −10.17828974970501294919493201837, −9.391305296833257148221719960173, −8.821769211335353225351863345315, −7.29381656739139693234283352364, −6.24554186892528550864988959631, −4.94720697761208684389158774293, −2.52304543565308784976037146098, −1.14911976625303827165170692907,
1.14911976625303827165170692907, 2.52304543565308784976037146098, 4.94720697761208684389158774293, 6.24554186892528550864988959631, 7.29381656739139693234283352364, 8.821769211335353225351863345315, 9.391305296833257148221719960173, 10.17828974970501294919493201837, 10.97289370472511688948647731685, 12.61825142944827577183203785288