L(s) = 1 | + (−3.81 − 3.81i)2-s + 21.1i·4-s + (−1.33 + 0.554i)5-s + (8.84 + 3.66i)7-s + (50.0 − 50.0i)8-s + (7.22 + 2.99i)10-s + (−17.3 + 41.8i)11-s − 86.3i·13-s + (−19.7 − 47.7i)14-s − 212.·16-s + (−33.9 − 61.3i)17-s + (−25.5 − 25.5i)19-s + (−11.7 − 28.2i)20-s + (225. − 93.4i)22-s + (12.9 − 31.2i)23-s + ⋯ |
L(s) = 1 | + (−1.34 − 1.34i)2-s + 2.63i·4-s + (−0.119 + 0.0495i)5-s + (0.477 + 0.197i)7-s + (2.21 − 2.21i)8-s + (0.228 + 0.0945i)10-s + (−0.474 + 1.14i)11-s − 1.84i·13-s + (−0.377 − 0.910i)14-s − 3.32·16-s + (−0.484 − 0.875i)17-s + (−0.308 − 0.308i)19-s + (−0.130 − 0.315i)20-s + (2.18 − 0.905i)22-s + (0.117 − 0.283i)23-s + ⋯ |
Λ(s)=(=(153s/2ΓC(s)L(s)(−0.937−0.348i)Λ(4−s)
Λ(s)=(=(153s/2ΓC(s+3/2)L(s)(−0.937−0.348i)Λ(1−s)
Degree: |
2 |
Conductor: |
153
= 32⋅17
|
Sign: |
−0.937−0.348i
|
Analytic conductor: |
9.02729 |
Root analytic conductor: |
3.00454 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ153(100,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 153, ( :3/2), −0.937−0.348i)
|
Particular Values
L(2) |
≈ |
0.0594237+0.330219i |
L(21) |
≈ |
0.0594237+0.330219i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 17 | 1+(33.9+61.3i)T |
good | 2 | 1+(3.81+3.81i)T+8iT2 |
| 5 | 1+(1.33−0.554i)T+(88.3−88.3i)T2 |
| 7 | 1+(−8.84−3.66i)T+(242.+242.i)T2 |
| 11 | 1+(17.3−41.8i)T+(−941.−941.i)T2 |
| 13 | 1+86.3iT−2.19e3T2 |
| 19 | 1+(25.5+25.5i)T+6.85e3iT2 |
| 23 | 1+(−12.9+31.2i)T+(−8.60e3−8.60e3i)T2 |
| 29 | 1+(−50.3+20.8i)T+(1.72e4−1.72e4i)T2 |
| 31 | 1+(−52.5−126.i)T+(−2.10e4+2.10e4i)T2 |
| 37 | 1+(166.+401.i)T+(−3.58e4+3.58e4i)T2 |
| 41 | 1+(128.+53.3i)T+(4.87e4+4.87e4i)T2 |
| 43 | 1+(231.−231.i)T−7.95e4iT2 |
| 47 | 1+357.iT−1.03e5T2 |
| 53 | 1+(118.+118.i)T+1.48e5iT2 |
| 59 | 1+(216.−216.i)T−2.05e5iT2 |
| 61 | 1+(198.+82.1i)T+(1.60e5+1.60e5i)T2 |
| 67 | 1+287.T+3.00e5T2 |
| 71 | 1+(312.+754.i)T+(−2.53e5+2.53e5i)T2 |
| 73 | 1+(−301.+124.i)T+(2.75e5−2.75e5i)T2 |
| 79 | 1+(−230.+557.i)T+(−3.48e5−3.48e5i)T2 |
| 83 | 1+(601.+601.i)T+5.71e5iT2 |
| 89 | 1−640.iT−7.04e5T2 |
| 97 | 1+(−622.+257.i)T+(6.45e5−6.45e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.74951109480005019722606259941, −10.71784335663947240372940868079, −10.10792036620660225545550465886, −9.029251613265213229227531301229, −8.024548329693957487176851250318, −7.24913798655740170135652059518, −4.90363133382532546523599388226, −3.20944298585490337317713464634, −2.00406833193304643026540936299, −0.25123913376458842603042520653,
1.59147520958125974176204236982, 4.54421166815279869654120632000, 5.99606026670883825490931636710, 6.78842688498728404020035709104, 8.093355855093347797220197283892, 8.594659803117958758813543440589, 9.710780639982677766075864883827, 10.75111218658183314723799818171, 11.61700451553911371007549712528, 13.63778067621914450210734873332