L(s) = 1 | + (0.809 − 0.587i)2-s + (0.220 + 0.679i)3-s + (0.309 − 0.951i)4-s + (0.451 + 0.328i)5-s + (0.578 + 0.420i)6-s + (0.309 − 0.951i)7-s + (−0.309 − 0.951i)8-s + (2.01 − 1.46i)9-s + 0.558·10-s + (1.91 + 2.70i)11-s + 0.714·12-s + (−3.67 + 2.66i)13-s + (−0.309 − 0.951i)14-s + (−0.123 + 0.379i)15-s + (−0.809 − 0.587i)16-s + (−5.44 − 3.95i)17-s + ⋯ |
L(s) = 1 | + (0.572 − 0.415i)2-s + (0.127 + 0.392i)3-s + (0.154 − 0.475i)4-s + (0.201 + 0.146i)5-s + (0.236 + 0.171i)6-s + (0.116 − 0.359i)7-s + (−0.109 − 0.336i)8-s + (0.671 − 0.487i)9-s + 0.176·10-s + (0.578 + 0.816i)11-s + 0.206·12-s + (−1.01 + 0.739i)13-s + (−0.0825 − 0.254i)14-s + (−0.0318 + 0.0979i)15-s + (−0.202 − 0.146i)16-s + (−1.31 − 0.958i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 154 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.939 + 0.342i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 154 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.939 + 0.342i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.56450 - 0.276568i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.56450 - 0.276568i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.809 + 0.587i)T \) |
| 7 | \( 1 + (-0.309 + 0.951i)T \) |
| 11 | \( 1 + (-1.91 - 2.70i)T \) |
good | 3 | \( 1 + (-0.220 - 0.679i)T + (-2.42 + 1.76i)T^{2} \) |
| 5 | \( 1 + (-0.451 - 0.328i)T + (1.54 + 4.75i)T^{2} \) |
| 13 | \( 1 + (3.67 - 2.66i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (5.44 + 3.95i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (-0.872 - 2.68i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 + 5.77T + 23T^{2} \) |
| 29 | \( 1 + (1.93 - 5.94i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (1.43 - 1.04i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (-3.16 + 9.72i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (-1.38 - 4.26i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 + 0.188T + 43T^{2} \) |
| 47 | \( 1 + (-3.65 - 11.2i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (-1.27 + 0.929i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (-2.85 + 8.79i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (2.25 + 1.63i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 - 3.36T + 67T^{2} \) |
| 71 | \( 1 + (-9.75 - 7.08i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (-4.68 + 14.4i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (-1.68 + 1.22i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (-2.75 - 1.99i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 + 8.40T + 89T^{2} \) |
| 97 | \( 1 + (-6.78 + 4.93i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.74062559290582453748784168467, −12.06317550548895216589890602456, −10.95203889484263482502222892567, −9.799973677063411505450793974731, −9.311427446166956958159271115834, −7.37374842870240854055276490548, −6.47070288606721861041739660733, −4.74198108150658984673783147816, −3.97800001387445315890539175838, −2.10880567635175124580303990422,
2.26401140672972347514027091273, 4.09318858661731543724910863366, 5.41751781824761196291114355034, 6.53523619527744305831396549762, 7.68491316906794227010678687812, 8.638218513170863683345116641956, 9.957588417296996845482076399940, 11.25377845923821954764325856655, 12.25521147943204526084828440483, 13.25267259528374118553387870615