L(s) = 1 | + 3-s + 5-s + 4·7-s + 9-s + 13-s + 15-s + 2·17-s + 4·21-s + 25-s + 27-s − 2·29-s − 4·31-s + 4·35-s + 6·37-s + 39-s − 6·41-s + 4·43-s + 45-s − 4·47-s + 9·49-s + 2·51-s − 10·53-s − 2·61-s + 4·63-s + 65-s + 8·67-s + 4·71-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 0.447·5-s + 1.51·7-s + 1/3·9-s + 0.277·13-s + 0.258·15-s + 0.485·17-s + 0.872·21-s + 1/5·25-s + 0.192·27-s − 0.371·29-s − 0.718·31-s + 0.676·35-s + 0.986·37-s + 0.160·39-s − 0.937·41-s + 0.609·43-s + 0.149·45-s − 0.583·47-s + 9/7·49-s + 0.280·51-s − 1.37·53-s − 0.256·61-s + 0.503·63-s + 0.124·65-s + 0.977·67-s + 0.474·71-s + ⋯ |
Λ(s)=(=(1560s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(1560s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.790375808 |
L(21) |
≈ |
2.790375808 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−T |
| 5 | 1−T |
| 13 | 1−T |
good | 7 | 1−4T+pT2 |
| 11 | 1+pT2 |
| 17 | 1−2T+pT2 |
| 19 | 1+pT2 |
| 23 | 1+pT2 |
| 29 | 1+2T+pT2 |
| 31 | 1+4T+pT2 |
| 37 | 1−6T+pT2 |
| 41 | 1+6T+pT2 |
| 43 | 1−4T+pT2 |
| 47 | 1+4T+pT2 |
| 53 | 1+10T+pT2 |
| 59 | 1+pT2 |
| 61 | 1+2T+pT2 |
| 67 | 1−8T+pT2 |
| 71 | 1−4T+pT2 |
| 73 | 1+6T+pT2 |
| 79 | 1+8T+pT2 |
| 83 | 1−8T+pT2 |
| 89 | 1+6T+pT2 |
| 97 | 1+14T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.361922981370355726520537378237, −8.560865380512469096549492525929, −7.937701919404004482623022118064, −7.25810834528999964875509262651, −6.12257508120125303222030801610, −5.22066779295482831433366349716, −4.46333026419845538385546929457, −3.38719073586029414138569537242, −2.17760885066242309825446481805, −1.33526849821080802501597040286,
1.33526849821080802501597040286, 2.17760885066242309825446481805, 3.38719073586029414138569537242, 4.46333026419845538385546929457, 5.22066779295482831433366349716, 6.12257508120125303222030801610, 7.25810834528999964875509262651, 7.937701919404004482623022118064, 8.560865380512469096549492525929, 9.361922981370355726520537378237