L(s) = 1 | + 3-s + 5-s + 4·7-s + 9-s + 13-s + 15-s + 2·17-s + 4·21-s + 25-s + 27-s − 2·29-s − 4·31-s + 4·35-s + 6·37-s + 39-s − 6·41-s + 4·43-s + 45-s − 4·47-s + 9·49-s + 2·51-s − 10·53-s − 2·61-s + 4·63-s + 65-s + 8·67-s + 4·71-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 0.447·5-s + 1.51·7-s + 1/3·9-s + 0.277·13-s + 0.258·15-s + 0.485·17-s + 0.872·21-s + 1/5·25-s + 0.192·27-s − 0.371·29-s − 0.718·31-s + 0.676·35-s + 0.986·37-s + 0.160·39-s − 0.937·41-s + 0.609·43-s + 0.149·45-s − 0.583·47-s + 9/7·49-s + 0.280·51-s − 1.37·53-s − 0.256·61-s + 0.503·63-s + 0.124·65-s + 0.977·67-s + 0.474·71-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1560 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.790375808\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.790375808\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - T \) |
| 5 | \( 1 - T \) |
| 13 | \( 1 - T \) |
good | 7 | \( 1 - 4 T + p T^{2} \) |
| 11 | \( 1 + p T^{2} \) |
| 17 | \( 1 - 2 T + p T^{2} \) |
| 19 | \( 1 + p T^{2} \) |
| 23 | \( 1 + p T^{2} \) |
| 29 | \( 1 + 2 T + p T^{2} \) |
| 31 | \( 1 + 4 T + p T^{2} \) |
| 37 | \( 1 - 6 T + p T^{2} \) |
| 41 | \( 1 + 6 T + p T^{2} \) |
| 43 | \( 1 - 4 T + p T^{2} \) |
| 47 | \( 1 + 4 T + p T^{2} \) |
| 53 | \( 1 + 10 T + p T^{2} \) |
| 59 | \( 1 + p T^{2} \) |
| 61 | \( 1 + 2 T + p T^{2} \) |
| 67 | \( 1 - 8 T + p T^{2} \) |
| 71 | \( 1 - 4 T + p T^{2} \) |
| 73 | \( 1 + 6 T + p T^{2} \) |
| 79 | \( 1 + 8 T + p T^{2} \) |
| 83 | \( 1 - 8 T + p T^{2} \) |
| 89 | \( 1 + 6 T + p T^{2} \) |
| 97 | \( 1 + 14 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.361922981370355726520537378237, −8.560865380512469096549492525929, −7.937701919404004482623022118064, −7.25810834528999964875509262651, −6.12257508120125303222030801610, −5.22066779295482831433366349716, −4.46333026419845538385546929457, −3.38719073586029414138569537242, −2.17760885066242309825446481805, −1.33526849821080802501597040286,
1.33526849821080802501597040286, 2.17760885066242309825446481805, 3.38719073586029414138569537242, 4.46333026419845538385546929457, 5.22066779295482831433366349716, 6.12257508120125303222030801610, 7.25810834528999964875509262651, 7.937701919404004482623022118064, 8.560865380512469096549492525929, 9.361922981370355726520537378237