L(s) = 1 | + (0.142 + 0.989i)2-s + (−0.449 + 0.983i)3-s + (−0.959 + 0.281i)4-s + (−1.03 − 0.304i)6-s + (0.474 − 0.304i)7-s + (−0.415 − 0.909i)8-s + (−0.110 − 0.127i)9-s + (−0.258 + 1.80i)11-s + (0.153 − 1.07i)12-s + (1.61 + 1.03i)13-s + (0.368 + 0.425i)14-s + (0.841 − 0.540i)16-s + (−0.959 − 0.281i)17-s + (0.110 − 0.127i)18-s + (0.0867 + 0.603i)21-s − 1.81·22-s + ⋯ |
L(s) = 1 | + (0.142 + 0.989i)2-s + (−0.449 + 0.983i)3-s + (−0.959 + 0.281i)4-s + (−1.03 − 0.304i)6-s + (0.474 − 0.304i)7-s + (−0.415 − 0.909i)8-s + (−0.110 − 0.127i)9-s + (−0.258 + 1.80i)11-s + (0.153 − 1.07i)12-s + (1.61 + 1.03i)13-s + (0.368 + 0.425i)14-s + (0.841 − 0.540i)16-s + (−0.959 − 0.281i)17-s + (0.110 − 0.127i)18-s + (0.0867 + 0.603i)21-s − 1.81·22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1564 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.994 + 0.105i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1564 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.994 + 0.105i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9139732673\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9139732673\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.142 - 0.989i)T \) |
| 17 | \( 1 + (0.959 + 0.281i)T \) |
| 23 | \( 1 + (0.281 - 0.959i)T \) |
good | 3 | \( 1 + (0.449 - 0.983i)T + (-0.654 - 0.755i)T^{2} \) |
| 5 | \( 1 + (0.142 + 0.989i)T^{2} \) |
| 7 | \( 1 + (-0.474 + 0.304i)T + (0.415 - 0.909i)T^{2} \) |
| 11 | \( 1 + (0.258 - 1.80i)T + (-0.959 - 0.281i)T^{2} \) |
| 13 | \( 1 + (-1.61 - 1.03i)T + (0.415 + 0.909i)T^{2} \) |
| 19 | \( 1 + (-0.841 + 0.540i)T^{2} \) |
| 29 | \( 1 + (-0.841 - 0.540i)T^{2} \) |
| 31 | \( 1 + (0.755 + 1.65i)T + (-0.654 + 0.755i)T^{2} \) |
| 37 | \( 1 + (0.142 - 0.989i)T^{2} \) |
| 41 | \( 1 + (0.142 + 0.989i)T^{2} \) |
| 43 | \( 1 + (0.654 + 0.755i)T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 + (-0.698 + 0.449i)T + (0.415 - 0.909i)T^{2} \) |
| 59 | \( 1 + (-0.415 - 0.909i)T^{2} \) |
| 61 | \( 1 + (0.654 - 0.755i)T^{2} \) |
| 67 | \( 1 + (0.959 - 0.281i)T^{2} \) |
| 71 | \( 1 + (-0.959 + 0.281i)T^{2} \) |
| 73 | \( 1 + (-0.841 + 0.540i)T^{2} \) |
| 79 | \( 1 + (-1.66 - 1.07i)T + (0.415 + 0.909i)T^{2} \) |
| 83 | \( 1 + (0.142 - 0.989i)T^{2} \) |
| 89 | \( 1 + (0.345 - 0.755i)T + (-0.654 - 0.755i)T^{2} \) |
| 97 | \( 1 + (0.142 + 0.989i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.681438273800762845590911139544, −9.441919269180673483420851403699, −8.380061940050689661121015314301, −7.54105606170735192686114547701, −6.80509154920857033278653378198, −5.92468673080924596955677204480, −5.00567422516814376195407313838, −4.21668349775703686089923095734, −3.99634996695436506228547079257, −1.92130090842809939313893319472,
0.78757257141016385497689176826, 1.76158311369799761846198673027, 3.09029979995766359027079529528, 3.82502213310086017982250102024, 5.23692234994416052834669995883, 5.86291802867704184225898914119, 6.53032717982026739722228844521, 7.893764595650719499657709490879, 8.576267652827193586269019311343, 8.961181071718193777426819751860