L(s) = 1 | + (0.142 + 0.989i)2-s + (−0.449 + 0.983i)3-s + (−0.959 + 0.281i)4-s + (−1.03 − 0.304i)6-s + (0.474 − 0.304i)7-s + (−0.415 − 0.909i)8-s + (−0.110 − 0.127i)9-s + (−0.258 + 1.80i)11-s + (0.153 − 1.07i)12-s + (1.61 + 1.03i)13-s + (0.368 + 0.425i)14-s + (0.841 − 0.540i)16-s + (−0.959 − 0.281i)17-s + (0.110 − 0.127i)18-s + (0.0867 + 0.603i)21-s − 1.81·22-s + ⋯ |
L(s) = 1 | + (0.142 + 0.989i)2-s + (−0.449 + 0.983i)3-s + (−0.959 + 0.281i)4-s + (−1.03 − 0.304i)6-s + (0.474 − 0.304i)7-s + (−0.415 − 0.909i)8-s + (−0.110 − 0.127i)9-s + (−0.258 + 1.80i)11-s + (0.153 − 1.07i)12-s + (1.61 + 1.03i)13-s + (0.368 + 0.425i)14-s + (0.841 − 0.540i)16-s + (−0.959 − 0.281i)17-s + (0.110 − 0.127i)18-s + (0.0867 + 0.603i)21-s − 1.81·22-s + ⋯ |
Λ(s)=(=(1564s/2ΓC(s)L(s)(−0.994+0.105i)Λ(1−s)
Λ(s)=(=(1564s/2ΓC(s)L(s)(−0.994+0.105i)Λ(1−s)
Degree: |
2 |
Conductor: |
1564
= 22⋅17⋅23
|
Sign: |
−0.994+0.105i
|
Analytic conductor: |
0.780537 |
Root analytic conductor: |
0.883480 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1564(1291,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1564, ( :0), −0.994+0.105i)
|
Particular Values
L(21) |
≈ |
0.9139732673 |
L(21) |
≈ |
0.9139732673 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.142−0.989i)T |
| 17 | 1+(0.959+0.281i)T |
| 23 | 1+(0.281−0.959i)T |
good | 3 | 1+(0.449−0.983i)T+(−0.654−0.755i)T2 |
| 5 | 1+(0.142+0.989i)T2 |
| 7 | 1+(−0.474+0.304i)T+(0.415−0.909i)T2 |
| 11 | 1+(0.258−1.80i)T+(−0.959−0.281i)T2 |
| 13 | 1+(−1.61−1.03i)T+(0.415+0.909i)T2 |
| 19 | 1+(−0.841+0.540i)T2 |
| 29 | 1+(−0.841−0.540i)T2 |
| 31 | 1+(0.755+1.65i)T+(−0.654+0.755i)T2 |
| 37 | 1+(0.142−0.989i)T2 |
| 41 | 1+(0.142+0.989i)T2 |
| 43 | 1+(0.654+0.755i)T2 |
| 47 | 1−T2 |
| 53 | 1+(−0.698+0.449i)T+(0.415−0.909i)T2 |
| 59 | 1+(−0.415−0.909i)T2 |
| 61 | 1+(0.654−0.755i)T2 |
| 67 | 1+(0.959−0.281i)T2 |
| 71 | 1+(−0.959+0.281i)T2 |
| 73 | 1+(−0.841+0.540i)T2 |
| 79 | 1+(−1.66−1.07i)T+(0.415+0.909i)T2 |
| 83 | 1+(0.142−0.989i)T2 |
| 89 | 1+(0.345−0.755i)T+(−0.654−0.755i)T2 |
| 97 | 1+(0.142+0.989i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.681438273800762845590911139544, −9.441919269180673483420851403699, −8.380061940050689661121015314301, −7.54105606170735192686114547701, −6.80509154920857033278653378198, −5.92468673080924596955677204480, −5.00567422516814376195407313838, −4.21668349775703686089923095734, −3.99634996695436506228547079257, −1.92130090842809939313893319472,
0.78757257141016385497689176826, 1.76158311369799761846198673027, 3.09029979995766359027079529528, 3.82502213310086017982250102024, 5.23692234994416052834669995883, 5.86291802867704184225898914119, 6.53032717982026739722228844521, 7.893764595650719499657709490879, 8.576267652827193586269019311343, 8.961181071718193777426819751860