L(s) = 1 | + (0.959 − 0.281i)2-s + (−1.19 − 1.37i)3-s + (0.841 − 0.540i)4-s + (−1.53 − 0.983i)6-s + (0.449 − 0.983i)7-s + (0.654 − 0.755i)8-s + (−0.328 + 2.28i)9-s + (1.45 + 0.425i)11-s + (−1.74 − 0.512i)12-s + (−0.698 − 1.53i)13-s + (0.153 − 1.07i)14-s + (0.415 − 0.909i)16-s + (0.841 + 0.540i)17-s + (0.328 + 2.28i)18-s + (−1.88 + 0.554i)21-s + 1.51·22-s + ⋯ |
L(s) = 1 | + (0.959 − 0.281i)2-s + (−1.19 − 1.37i)3-s + (0.841 − 0.540i)4-s + (−1.53 − 0.983i)6-s + (0.449 − 0.983i)7-s + (0.654 − 0.755i)8-s + (−0.328 + 2.28i)9-s + (1.45 + 0.425i)11-s + (−1.74 − 0.512i)12-s + (−0.698 − 1.53i)13-s + (0.153 − 1.07i)14-s + (0.415 − 0.909i)16-s + (0.841 + 0.540i)17-s + (0.328 + 2.28i)18-s + (−1.88 + 0.554i)21-s + 1.51·22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1564 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.672 + 0.740i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1564 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.672 + 0.740i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.489263050\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.489263050\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.959 + 0.281i)T \) |
| 17 | \( 1 + (-0.841 - 0.540i)T \) |
| 23 | \( 1 + (0.540 - 0.841i)T \) |
good | 3 | \( 1 + (1.19 + 1.37i)T + (-0.142 + 0.989i)T^{2} \) |
| 5 | \( 1 + (0.959 - 0.281i)T^{2} \) |
| 7 | \( 1 + (-0.449 + 0.983i)T + (-0.654 - 0.755i)T^{2} \) |
| 11 | \( 1 + (-1.45 - 0.425i)T + (0.841 + 0.540i)T^{2} \) |
| 13 | \( 1 + (0.698 + 1.53i)T + (-0.654 + 0.755i)T^{2} \) |
| 19 | \( 1 + (-0.415 + 0.909i)T^{2} \) |
| 29 | \( 1 + (-0.415 - 0.909i)T^{2} \) |
| 31 | \( 1 + (0.989 - 1.14i)T + (-0.142 - 0.989i)T^{2} \) |
| 37 | \( 1 + (0.959 + 0.281i)T^{2} \) |
| 41 | \( 1 + (0.959 - 0.281i)T^{2} \) |
| 43 | \( 1 + (0.142 - 0.989i)T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 + (0.544 - 1.19i)T + (-0.654 - 0.755i)T^{2} \) |
| 59 | \( 1 + (0.654 - 0.755i)T^{2} \) |
| 61 | \( 1 + (0.142 + 0.989i)T^{2} \) |
| 67 | \( 1 + (-0.841 + 0.540i)T^{2} \) |
| 71 | \( 1 + (0.841 - 0.540i)T^{2} \) |
| 73 | \( 1 + (-0.415 + 0.909i)T^{2} \) |
| 79 | \( 1 + (-0.234 - 0.512i)T + (-0.654 + 0.755i)T^{2} \) |
| 83 | \( 1 + (0.959 + 0.281i)T^{2} \) |
| 89 | \( 1 + (0.857 + 0.989i)T + (-0.142 + 0.989i)T^{2} \) |
| 97 | \( 1 + (0.959 - 0.281i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.719083900161847986471715458529, −7.950116607539297869544281050635, −7.42546650506925530534821052722, −6.88551539744296053234041930438, −5.89277156039099519975860917892, −5.45319070652119968645415406758, −4.42519868920478823044725057817, −3.38693096231286037971040754715, −1.79820596423359557664866495602, −1.12831812391049122556205172135,
2.06036815788449116676039737733, 3.58003442089418497861639487735, 4.25299725202695622838188567391, 4.90653130117297799742488181401, 5.78087705658568076219453258855, 6.23020973567013089492922353039, 7.11657413138598084114907424761, 8.460662462070233436848922059573, 9.353753497235926102496030726281, 9.850355150383671871801809290376