L(s) = 1 | + 2·5-s + 3·9-s + 12·13-s − 2·17-s + 5·25-s − 20·29-s + 2·37-s + 20·41-s + 6·45-s − 14·53-s + 10·61-s + 24·65-s + 6·73-s − 4·85-s − 10·89-s + 36·97-s + 2·101-s − 6·109-s − 28·113-s + 36·117-s + 11·121-s + 22·125-s + 127-s + 131-s + 137-s + 139-s − 40·145-s + ⋯ |
L(s) = 1 | + 0.894·5-s + 9-s + 3.32·13-s − 0.485·17-s + 25-s − 3.71·29-s + 0.328·37-s + 3.12·41-s + 0.894·45-s − 1.92·53-s + 1.28·61-s + 2.97·65-s + 0.702·73-s − 0.433·85-s − 1.05·89-s + 3.65·97-s + 0.199·101-s − 0.574·109-s − 2.63·113-s + 3.32·117-s + 121-s + 1.96·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 3.32·145-s + ⋯ |
Λ(s)=(=(2458624s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(2458624s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
2458624
= 210⋅74
|
Sign: |
1
|
Analytic conductor: |
156.763 |
Root analytic conductor: |
3.53843 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 2458624, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
3.928677610 |
L(21) |
≈ |
3.928677610 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 7 | | 1 |
good | 3 | C2 | (1−pT+pT2)(1+pT+pT2) |
| 5 | C22 | 1−2T−T2−2pT3+p2T4 |
| 11 | C22 | 1−pT2+p2T4 |
| 13 | C2 | (1−6T+pT2)2 |
| 17 | C22 | 1+2T−13T2+2pT3+p2T4 |
| 19 | C22 | 1−pT2+p2T4 |
| 23 | C22 | 1−pT2+p2T4 |
| 29 | C2 | (1+10T+pT2)2 |
| 31 | C22 | 1−pT2+p2T4 |
| 37 | C22 | 1−2T−33T2−2pT3+p2T4 |
| 41 | C2 | (1−10T+pT2)2 |
| 43 | C2 | (1+pT2)2 |
| 47 | C22 | 1−pT2+p2T4 |
| 53 | C22 | 1+14T+143T2+14pT3+p2T4 |
| 59 | C22 | 1−pT2+p2T4 |
| 61 | C22 | 1−10T+39T2−10pT3+p2T4 |
| 67 | C22 | 1−pT2+p2T4 |
| 71 | C2 | (1+pT2)2 |
| 73 | C22 | 1−6T−37T2−6pT3+p2T4 |
| 79 | C22 | 1−pT2+p2T4 |
| 83 | C2 | (1+pT2)2 |
| 89 | C22 | 1+10T+11T2+10pT3+p2T4 |
| 97 | C2 | (1−18T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.596217089251235973144226146753, −9.270842932231006894609393718444, −8.816278662756817364832643584961, −8.690156043388332829496223141848, −7.912591218713821630998378719785, −7.74772030784588976463769790506, −7.20508973447611266448702088031, −6.75283449306363278982894449113, −6.22360093555634451850504371113, −6.00123654017432615011133482722, −5.73116554112964815885542667805, −5.24281242106899192112193828474, −4.47188546696729274756658672390, −4.12494590271738282204569281943, −3.61633248902851439760982642349, −3.42891139092492171791587163282, −2.47314716694803096831033800656, −1.86345545908322150849026141964, −1.45286753045269302624972575186, −0.854463060309764483263012365521,
0.854463060309764483263012365521, 1.45286753045269302624972575186, 1.86345545908322150849026141964, 2.47314716694803096831033800656, 3.42891139092492171791587163282, 3.61633248902851439760982642349, 4.12494590271738282204569281943, 4.47188546696729274756658672390, 5.24281242106899192112193828474, 5.73116554112964815885542667805, 6.00123654017432615011133482722, 6.22360093555634451850504371113, 6.75283449306363278982894449113, 7.20508973447611266448702088031, 7.74772030784588976463769790506, 7.912591218713821630998378719785, 8.690156043388332829496223141848, 8.816278662756817364832643584961, 9.270842932231006894609393718444, 9.596217089251235973144226146753