Properties

Label 4-1568e2-1.1-c1e2-0-16
Degree $4$
Conductor $2458624$
Sign $1$
Analytic cond. $156.763$
Root an. cond. $3.53843$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s + 3·9-s + 12·13-s − 2·17-s + 5·25-s − 20·29-s + 2·37-s + 20·41-s + 6·45-s − 14·53-s + 10·61-s + 24·65-s + 6·73-s − 4·85-s − 10·89-s + 36·97-s + 2·101-s − 6·109-s − 28·113-s + 36·117-s + 11·121-s + 22·125-s + 127-s + 131-s + 137-s + 139-s − 40·145-s + ⋯
L(s)  = 1  + 0.894·5-s + 9-s + 3.32·13-s − 0.485·17-s + 25-s − 3.71·29-s + 0.328·37-s + 3.12·41-s + 0.894·45-s − 1.92·53-s + 1.28·61-s + 2.97·65-s + 0.702·73-s − 0.433·85-s − 1.05·89-s + 3.65·97-s + 0.199·101-s − 0.574·109-s − 2.63·113-s + 3.32·117-s + 121-s + 1.96·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 3.32·145-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2458624 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2458624 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(2458624\)    =    \(2^{10} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(156.763\)
Root analytic conductor: \(3.53843\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 2458624,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.928677610\)
\(L(\frac12)\) \(\approx\) \(3.928677610\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
good3$C_2$ \( ( 1 - p T + p T^{2} )( 1 + p T + p T^{2} ) \)
5$C_2^2$ \( 1 - 2 T - T^{2} - 2 p T^{3} + p^{2} T^{4} \)
11$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
13$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
17$C_2^2$ \( 1 + 2 T - 13 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
23$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
31$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 - 2 T - 33 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
41$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 + p T^{2} )^{2} \)
47$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 + 14 T + 143 T^{2} + 14 p T^{3} + p^{2} T^{4} \)
59$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 - 10 T + 39 T^{2} - 10 p T^{3} + p^{2} T^{4} \)
67$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2^2$ \( 1 - 6 T - 37 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
79$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
83$C_2$ \( ( 1 + p T^{2} )^{2} \)
89$C_2^2$ \( 1 + 10 T + 11 T^{2} + 10 p T^{3} + p^{2} T^{4} \)
97$C_2$ \( ( 1 - 18 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.596217089251235973144226146753, −9.270842932231006894609393718444, −8.816278662756817364832643584961, −8.690156043388332829496223141848, −7.912591218713821630998378719785, −7.74772030784588976463769790506, −7.20508973447611266448702088031, −6.75283449306363278982894449113, −6.22360093555634451850504371113, −6.00123654017432615011133482722, −5.73116554112964815885542667805, −5.24281242106899192112193828474, −4.47188546696729274756658672390, −4.12494590271738282204569281943, −3.61633248902851439760982642349, −3.42891139092492171791587163282, −2.47314716694803096831033800656, −1.86345545908322150849026141964, −1.45286753045269302624972575186, −0.854463060309764483263012365521, 0.854463060309764483263012365521, 1.45286753045269302624972575186, 1.86345545908322150849026141964, 2.47314716694803096831033800656, 3.42891139092492171791587163282, 3.61633248902851439760982642349, 4.12494590271738282204569281943, 4.47188546696729274756658672390, 5.24281242106899192112193828474, 5.73116554112964815885542667805, 6.00123654017432615011133482722, 6.22360093555634451850504371113, 6.75283449306363278982894449113, 7.20508973447611266448702088031, 7.74772030784588976463769790506, 7.912591218713821630998378719785, 8.690156043388332829496223141848, 8.816278662756817364832643584961, 9.270842932231006894609393718444, 9.596217089251235973144226146753

Graph of the $Z$-function along the critical line