Properties

Label 2-1575-1.1-c3-0-77
Degree $2$
Conductor $1575$
Sign $-1$
Analytic cond. $92.9280$
Root an. cond. $9.63991$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5.31·2-s + 20.2·4-s + 7·7-s − 65.0·8-s − 25.5·11-s − 64.1·13-s − 37.1·14-s + 183.·16-s + 27.6·17-s + 0.792·19-s + 135.·22-s − 108.·23-s + 340.·26-s + 141.·28-s + 234.·29-s + 129.·31-s − 455.·32-s − 147.·34-s + 38.3·37-s − 4.21·38-s + 403.·41-s + 172.·43-s − 516.·44-s + 577.·46-s − 206.·47-s + 49·49-s − 1.29e3·52-s + ⋯
L(s)  = 1  − 1.87·2-s + 2.52·4-s + 0.377·7-s − 2.87·8-s − 0.700·11-s − 1.36·13-s − 0.710·14-s + 2.86·16-s + 0.395·17-s + 0.00956·19-s + 1.31·22-s − 0.984·23-s + 2.56·26-s + 0.956·28-s + 1.49·29-s + 0.748·31-s − 2.51·32-s − 0.742·34-s + 0.170·37-s − 0.0179·38-s + 1.53·41-s + 0.613·43-s − 1.77·44-s + 1.84·46-s − 0.642·47-s + 0.142·49-s − 3.45·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1575 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1575 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1575\)    =    \(3^{2} \cdot 5^{2} \cdot 7\)
Sign: $-1$
Analytic conductor: \(92.9280\)
Root analytic conductor: \(9.63991\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1575,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
7 \( 1 - 7T \)
good2 \( 1 + 5.31T + 8T^{2} \)
11 \( 1 + 25.5T + 1.33e3T^{2} \)
13 \( 1 + 64.1T + 2.19e3T^{2} \)
17 \( 1 - 27.6T + 4.91e3T^{2} \)
19 \( 1 - 0.792T + 6.85e3T^{2} \)
23 \( 1 + 108.T + 1.21e4T^{2} \)
29 \( 1 - 234.T + 2.43e4T^{2} \)
31 \( 1 - 129.T + 2.97e4T^{2} \)
37 \( 1 - 38.3T + 5.06e4T^{2} \)
41 \( 1 - 403.T + 6.89e4T^{2} \)
43 \( 1 - 172.T + 7.95e4T^{2} \)
47 \( 1 + 206.T + 1.03e5T^{2} \)
53 \( 1 + 144.T + 1.48e5T^{2} \)
59 \( 1 - 679.T + 2.05e5T^{2} \)
61 \( 1 + 574.T + 2.26e5T^{2} \)
67 \( 1 - 515.T + 3.00e5T^{2} \)
71 \( 1 + 556.T + 3.57e5T^{2} \)
73 \( 1 + 173.T + 3.89e5T^{2} \)
79 \( 1 - 79.3T + 4.93e5T^{2} \)
83 \( 1 + 1.04e3T + 5.71e5T^{2} \)
89 \( 1 + 652.T + 7.04e5T^{2} \)
97 \( 1 - 515.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.605267409729642678770868496274, −7.924725317842742106665282430430, −7.48810047916471101753232001919, −6.59019176974111670550544500656, −5.66776037665718398153816364324, −4.53015152759377661553167619000, −2.85640923665417832795545177743, −2.23728478790244649804347741252, −1.03070811781228184345283483537, 0, 1.03070811781228184345283483537, 2.23728478790244649804347741252, 2.85640923665417832795545177743, 4.53015152759377661553167619000, 5.66776037665718398153816364324, 6.59019176974111670550544500656, 7.48810047916471101753232001919, 7.924725317842742106665282430430, 8.605267409729642678770868496274

Graph of the $Z$-function along the critical line