L(s) = 1 | − 5.31·2-s + 20.2·4-s + 7·7-s − 65.0·8-s − 25.5·11-s − 64.1·13-s − 37.1·14-s + 183.·16-s + 27.6·17-s + 0.792·19-s + 135.·22-s − 108.·23-s + 340.·26-s + 141.·28-s + 234.·29-s + 129.·31-s − 455.·32-s − 147.·34-s + 38.3·37-s − 4.21·38-s + 403.·41-s + 172.·43-s − 516.·44-s + 577.·46-s − 206.·47-s + 49·49-s − 1.29e3·52-s + ⋯ |
L(s) = 1 | − 1.87·2-s + 2.52·4-s + 0.377·7-s − 2.87·8-s − 0.700·11-s − 1.36·13-s − 0.710·14-s + 2.86·16-s + 0.395·17-s + 0.00956·19-s + 1.31·22-s − 0.984·23-s + 2.56·26-s + 0.956·28-s + 1.49·29-s + 0.748·31-s − 2.51·32-s − 0.742·34-s + 0.170·37-s − 0.0179·38-s + 1.53·41-s + 0.613·43-s − 1.77·44-s + 1.84·46-s − 0.642·47-s + 0.142·49-s − 3.45·52-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1575 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1575 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| 7 | \( 1 - 7T \) |
good | 2 | \( 1 + 5.31T + 8T^{2} \) |
| 11 | \( 1 + 25.5T + 1.33e3T^{2} \) |
| 13 | \( 1 + 64.1T + 2.19e3T^{2} \) |
| 17 | \( 1 - 27.6T + 4.91e3T^{2} \) |
| 19 | \( 1 - 0.792T + 6.85e3T^{2} \) |
| 23 | \( 1 + 108.T + 1.21e4T^{2} \) |
| 29 | \( 1 - 234.T + 2.43e4T^{2} \) |
| 31 | \( 1 - 129.T + 2.97e4T^{2} \) |
| 37 | \( 1 - 38.3T + 5.06e4T^{2} \) |
| 41 | \( 1 - 403.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 172.T + 7.95e4T^{2} \) |
| 47 | \( 1 + 206.T + 1.03e5T^{2} \) |
| 53 | \( 1 + 144.T + 1.48e5T^{2} \) |
| 59 | \( 1 - 679.T + 2.05e5T^{2} \) |
| 61 | \( 1 + 574.T + 2.26e5T^{2} \) |
| 67 | \( 1 - 515.T + 3.00e5T^{2} \) |
| 71 | \( 1 + 556.T + 3.57e5T^{2} \) |
| 73 | \( 1 + 173.T + 3.89e5T^{2} \) |
| 79 | \( 1 - 79.3T + 4.93e5T^{2} \) |
| 83 | \( 1 + 1.04e3T + 5.71e5T^{2} \) |
| 89 | \( 1 + 652.T + 7.04e5T^{2} \) |
| 97 | \( 1 - 515.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.605267409729642678770868496274, −7.924725317842742106665282430430, −7.48810047916471101753232001919, −6.59019176974111670550544500656, −5.66776037665718398153816364324, −4.53015152759377661553167619000, −2.85640923665417832795545177743, −2.23728478790244649804347741252, −1.03070811781228184345283483537, 0,
1.03070811781228184345283483537, 2.23728478790244649804347741252, 2.85640923665417832795545177743, 4.53015152759377661553167619000, 5.66776037665718398153816364324, 6.59019176974111670550544500656, 7.48810047916471101753232001919, 7.924725317842742106665282430430, 8.605267409729642678770868496274