Properties

Label 2-1575-1.1-c3-0-102
Degree $2$
Conductor $1575$
Sign $-1$
Analytic cond. $92.9280$
Root an. cond. $9.63991$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.73·2-s + 5.94·4-s − 7·7-s + 7.67·8-s + 36.3·11-s + 75.8·13-s + 26.1·14-s − 76.2·16-s − 31.6·17-s + 25.1·19-s − 135.·22-s − 212.·23-s − 283.·26-s − 41.6·28-s + 235.·29-s − 270.·31-s + 223.·32-s + 118.·34-s − 362.·37-s − 93.9·38-s − 132.·41-s + 5.13·43-s + 216.·44-s + 792.·46-s − 216.·47-s + 49·49-s + 451.·52-s + ⋯
L(s)  = 1  − 1.32·2-s + 0.743·4-s − 0.377·7-s + 0.338·8-s + 0.996·11-s + 1.61·13-s + 0.499·14-s − 1.19·16-s − 0.451·17-s + 0.303·19-s − 1.31·22-s − 1.92·23-s − 2.13·26-s − 0.280·28-s + 1.50·29-s − 1.56·31-s + 1.23·32-s + 0.596·34-s − 1.60·37-s − 0.400·38-s − 0.505·41-s + 0.0182·43-s + 0.740·44-s + 2.54·46-s − 0.672·47-s + 0.142·49-s + 1.20·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1575 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1575 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1575\)    =    \(3^{2} \cdot 5^{2} \cdot 7\)
Sign: $-1$
Analytic conductor: \(92.9280\)
Root analytic conductor: \(9.63991\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1575,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
7 \( 1 + 7T \)
good2 \( 1 + 3.73T + 8T^{2} \)
11 \( 1 - 36.3T + 1.33e3T^{2} \)
13 \( 1 - 75.8T + 2.19e3T^{2} \)
17 \( 1 + 31.6T + 4.91e3T^{2} \)
19 \( 1 - 25.1T + 6.85e3T^{2} \)
23 \( 1 + 212.T + 1.21e4T^{2} \)
29 \( 1 - 235.T + 2.43e4T^{2} \)
31 \( 1 + 270.T + 2.97e4T^{2} \)
37 \( 1 + 362.T + 5.06e4T^{2} \)
41 \( 1 + 132.T + 6.89e4T^{2} \)
43 \( 1 - 5.13T + 7.95e4T^{2} \)
47 \( 1 + 216.T + 1.03e5T^{2} \)
53 \( 1 - 455.T + 1.48e5T^{2} \)
59 \( 1 - 689.T + 2.05e5T^{2} \)
61 \( 1 - 130.T + 2.26e5T^{2} \)
67 \( 1 + 633.T + 3.00e5T^{2} \)
71 \( 1 - 1.06e3T + 3.57e5T^{2} \)
73 \( 1 + 1.00e3T + 3.89e5T^{2} \)
79 \( 1 + 381.T + 4.93e5T^{2} \)
83 \( 1 + 48.5T + 5.71e5T^{2} \)
89 \( 1 + 53.5T + 7.04e5T^{2} \)
97 \( 1 + 968.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.600482070559689503932093754458, −8.294818317983626520707626125187, −7.09742558722274511898808789670, −6.53927626910810476034512440344, −5.63046171702231332212903147999, −4.22798165998469826770686055857, −3.53593801720265316930473974944, −1.98062764744021305272744132256, −1.16416871364992294215086809502, 0, 1.16416871364992294215086809502, 1.98062764744021305272744132256, 3.53593801720265316930473974944, 4.22798165998469826770686055857, 5.63046171702231332212903147999, 6.53927626910810476034512440344, 7.09742558722274511898808789670, 8.294818317983626520707626125187, 8.600482070559689503932093754458

Graph of the $Z$-function along the critical line