Properties

Label 2-1575-1.1-c3-0-100
Degree $2$
Conductor $1575$
Sign $-1$
Analytic cond. $92.9280$
Root an. cond. $9.63991$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.561·2-s − 7.68·4-s − 7·7-s − 8.80·8-s + 25.8·11-s − 15.5·13-s − 3.93·14-s + 56.5·16-s + 95.1·17-s − 143.·19-s + 14.4·22-s − 77.5·23-s − 8.73·26-s + 53.7·28-s + 204.·29-s − 40.6·31-s + 102.·32-s + 53.4·34-s + 95.6·37-s − 80.5·38-s − 24.7·41-s + 282.·43-s − 198.·44-s − 43.5·46-s − 257.·47-s + 49·49-s + 119.·52-s + ⋯
L(s)  = 1  + 0.198·2-s − 0.960·4-s − 0.377·7-s − 0.389·8-s + 0.707·11-s − 0.331·13-s − 0.0750·14-s + 0.883·16-s + 1.35·17-s − 1.73·19-s + 0.140·22-s − 0.702·23-s − 0.0658·26-s + 0.363·28-s + 1.30·29-s − 0.235·31-s + 0.564·32-s + 0.269·34-s + 0.425·37-s − 0.343·38-s − 0.0941·41-s + 1.00·43-s − 0.679·44-s − 0.139·46-s − 0.798·47-s + 0.142·49-s + 0.318·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1575 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1575 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1575\)    =    \(3^{2} \cdot 5^{2} \cdot 7\)
Sign: $-1$
Analytic conductor: \(92.9280\)
Root analytic conductor: \(9.63991\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1575,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
7 \( 1 + 7T \)
good2 \( 1 - 0.561T + 8T^{2} \)
11 \( 1 - 25.8T + 1.33e3T^{2} \)
13 \( 1 + 15.5T + 2.19e3T^{2} \)
17 \( 1 - 95.1T + 4.91e3T^{2} \)
19 \( 1 + 143.T + 6.85e3T^{2} \)
23 \( 1 + 77.5T + 1.21e4T^{2} \)
29 \( 1 - 204.T + 2.43e4T^{2} \)
31 \( 1 + 40.6T + 2.97e4T^{2} \)
37 \( 1 - 95.6T + 5.06e4T^{2} \)
41 \( 1 + 24.7T + 6.89e4T^{2} \)
43 \( 1 - 282.T + 7.95e4T^{2} \)
47 \( 1 + 257.T + 1.03e5T^{2} \)
53 \( 1 + 257.T + 1.48e5T^{2} \)
59 \( 1 - 651.T + 2.05e5T^{2} \)
61 \( 1 - 451.T + 2.26e5T^{2} \)
67 \( 1 - 832.T + 3.00e5T^{2} \)
71 \( 1 - 174.T + 3.57e5T^{2} \)
73 \( 1 + 47.4T + 3.89e5T^{2} \)
79 \( 1 + 1.16T + 4.93e5T^{2} \)
83 \( 1 + 1.49e3T + 5.71e5T^{2} \)
89 \( 1 + 1.30e3T + 7.04e5T^{2} \)
97 \( 1 + 1.36e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.522159381079869159984886151380, −8.170915117258542673441349737224, −6.94308381369935715011788674764, −6.13648521869361046893741555063, −5.34151541851832069222826536003, −4.31721906385571152202760831783, −3.75219163088503200248260963520, −2.61079507159791105883210867362, −1.15656329597800068966987410115, 0, 1.15656329597800068966987410115, 2.61079507159791105883210867362, 3.75219163088503200248260963520, 4.31721906385571152202760831783, 5.34151541851832069222826536003, 6.13648521869361046893741555063, 6.94308381369935715011788674764, 8.170915117258542673441349737224, 8.522159381079869159984886151380

Graph of the $Z$-function along the critical line