L(s) = 1 | + 0.561·2-s − 7.68·4-s − 7·7-s − 8.80·8-s + 25.8·11-s − 15.5·13-s − 3.93·14-s + 56.5·16-s + 95.1·17-s − 143.·19-s + 14.4·22-s − 77.5·23-s − 8.73·26-s + 53.7·28-s + 204.·29-s − 40.6·31-s + 102.·32-s + 53.4·34-s + 95.6·37-s − 80.5·38-s − 24.7·41-s + 282.·43-s − 198.·44-s − 43.5·46-s − 257.·47-s + 49·49-s + 119.·52-s + ⋯ |
L(s) = 1 | + 0.198·2-s − 0.960·4-s − 0.377·7-s − 0.389·8-s + 0.707·11-s − 0.331·13-s − 0.0750·14-s + 0.883·16-s + 1.35·17-s − 1.73·19-s + 0.140·22-s − 0.702·23-s − 0.0658·26-s + 0.363·28-s + 1.30·29-s − 0.235·31-s + 0.564·32-s + 0.269·34-s + 0.425·37-s − 0.343·38-s − 0.0941·41-s + 1.00·43-s − 0.679·44-s − 0.139·46-s − 0.798·47-s + 0.142·49-s + 0.318·52-s + ⋯ |
Λ(s)=(=(1575s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(1575s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1 |
| 7 | 1+7T |
good | 2 | 1−0.561T+8T2 |
| 11 | 1−25.8T+1.33e3T2 |
| 13 | 1+15.5T+2.19e3T2 |
| 17 | 1−95.1T+4.91e3T2 |
| 19 | 1+143.T+6.85e3T2 |
| 23 | 1+77.5T+1.21e4T2 |
| 29 | 1−204.T+2.43e4T2 |
| 31 | 1+40.6T+2.97e4T2 |
| 37 | 1−95.6T+5.06e4T2 |
| 41 | 1+24.7T+6.89e4T2 |
| 43 | 1−282.T+7.95e4T2 |
| 47 | 1+257.T+1.03e5T2 |
| 53 | 1+257.T+1.48e5T2 |
| 59 | 1−651.T+2.05e5T2 |
| 61 | 1−451.T+2.26e5T2 |
| 67 | 1−832.T+3.00e5T2 |
| 71 | 1−174.T+3.57e5T2 |
| 73 | 1+47.4T+3.89e5T2 |
| 79 | 1+1.16T+4.93e5T2 |
| 83 | 1+1.49e3T+5.71e5T2 |
| 89 | 1+1.30e3T+7.04e5T2 |
| 97 | 1+1.36e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.522159381079869159984886151380, −8.170915117258542673441349737224, −6.94308381369935715011788674764, −6.13648521869361046893741555063, −5.34151541851832069222826536003, −4.31721906385571152202760831783, −3.75219163088503200248260963520, −2.61079507159791105883210867362, −1.15656329597800068966987410115, 0,
1.15656329597800068966987410115, 2.61079507159791105883210867362, 3.75219163088503200248260963520, 4.31721906385571152202760831783, 5.34151541851832069222826536003, 6.13648521869361046893741555063, 6.94308381369935715011788674764, 8.170915117258542673441349737224, 8.522159381079869159984886151380