Properties

Label 2-1575-1.1-c3-0-49
Degree $2$
Conductor $1575$
Sign $1$
Analytic cond. $92.9280$
Root an. cond. $9.63991$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.70·2-s − 0.701·4-s + 7·7-s − 23.5·8-s − 4.01·11-s + 51.6·13-s + 18.9·14-s − 57.8·16-s + 67.5·17-s − 50.9·19-s − 10.8·22-s − 0.507·23-s + 139.·26-s − 4.91·28-s + 120.·29-s − 292.·31-s + 31.6·32-s + 182.·34-s − 144.·37-s − 137.·38-s + 57.2·41-s − 283.·43-s + 2.81·44-s − 1.37·46-s + 233.·47-s + 49·49-s − 36.2·52-s + ⋯
L(s)  = 1  + 0.955·2-s − 0.0876·4-s + 0.377·7-s − 1.03·8-s − 0.110·11-s + 1.10·13-s + 0.361·14-s − 0.904·16-s + 0.963·17-s − 0.614·19-s − 0.105·22-s − 0.00460·23-s + 1.05·26-s − 0.0331·28-s + 0.768·29-s − 1.69·31-s + 0.174·32-s + 0.919·34-s − 0.644·37-s − 0.587·38-s + 0.217·41-s − 1.00·43-s + 0.00965·44-s − 0.00439·46-s + 0.725·47-s + 0.142·49-s − 0.0965·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1575 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1575 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1575\)    =    \(3^{2} \cdot 5^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(92.9280\)
Root analytic conductor: \(9.63991\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1575,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(3.156637121\)
\(L(\frac12)\) \(\approx\) \(3.156637121\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
7 \( 1 - 7T \)
good2 \( 1 - 2.70T + 8T^{2} \)
11 \( 1 + 4.01T + 1.33e3T^{2} \)
13 \( 1 - 51.6T + 2.19e3T^{2} \)
17 \( 1 - 67.5T + 4.91e3T^{2} \)
19 \( 1 + 50.9T + 6.85e3T^{2} \)
23 \( 1 + 0.507T + 1.21e4T^{2} \)
29 \( 1 - 120.T + 2.43e4T^{2} \)
31 \( 1 + 292.T + 2.97e4T^{2} \)
37 \( 1 + 144.T + 5.06e4T^{2} \)
41 \( 1 - 57.2T + 6.89e4T^{2} \)
43 \( 1 + 283.T + 7.95e4T^{2} \)
47 \( 1 - 233.T + 1.03e5T^{2} \)
53 \( 1 - 406.T + 1.48e5T^{2} \)
59 \( 1 - 577.T + 2.05e5T^{2} \)
61 \( 1 - 322.T + 2.26e5T^{2} \)
67 \( 1 - 985.T + 3.00e5T^{2} \)
71 \( 1 + 1.03e3T + 3.57e5T^{2} \)
73 \( 1 - 692.T + 3.89e5T^{2} \)
79 \( 1 + 428.T + 4.93e5T^{2} \)
83 \( 1 - 537.T + 5.71e5T^{2} \)
89 \( 1 - 802.T + 7.04e5T^{2} \)
97 \( 1 - 1.75e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.838134311232744556932940896538, −8.447960317874745088348632089854, −7.35710330026062763203954688928, −6.37232216039071550683442061272, −5.60939127890603190249419851742, −4.97148196796488684011996480558, −3.91705952944725557138387998311, −3.39294232959851752633017615218, −2.10436174858164533486591129343, −0.75172354341462870711658817546, 0.75172354341462870711658817546, 2.10436174858164533486591129343, 3.39294232959851752633017615218, 3.91705952944725557138387998311, 4.97148196796488684011996480558, 5.60939127890603190249419851742, 6.37232216039071550683442061272, 7.35710330026062763203954688928, 8.447960317874745088348632089854, 8.838134311232744556932940896538

Graph of the $Z$-function along the critical line