L(s) = 1 | + 2·2-s − 2·3-s + 2·4-s − 2·5-s − 4·6-s + 4·7-s + 4·8-s + 3·9-s − 4·10-s + 6·11-s − 4·12-s + 2·13-s + 8·14-s + 4·15-s + 8·16-s + 10·17-s + 6·18-s + 4·19-s − 4·20-s − 8·21-s + 12·22-s − 8·24-s − 4·25-s + 4·26-s − 4·27-s + 8·28-s − 2·29-s + ⋯ |
L(s) = 1 | + 1.41·2-s − 1.15·3-s + 4-s − 0.894·5-s − 1.63·6-s + 1.51·7-s + 1.41·8-s + 9-s − 1.26·10-s + 1.80·11-s − 1.15·12-s + 0.554·13-s + 2.13·14-s + 1.03·15-s + 2·16-s + 2.42·17-s + 1.41·18-s + 0.917·19-s − 0.894·20-s − 1.74·21-s + 2.55·22-s − 1.63·24-s − 4/5·25-s + 0.784·26-s − 0.769·27-s + 1.51·28-s − 0.371·29-s + ⋯ |
Λ(s)=(=(2518569s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(2518569s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
2518569
= 32⋅234
|
Sign: |
1
|
Analytic conductor: |
160.586 |
Root analytic conductor: |
3.55981 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 2518569, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
5.908054317 |
L(21) |
≈ |
5.908054317 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C1 | (1+T)2 |
| 23 | | 1 |
good | 2 | C22 | 1−pT+pT2−p2T3+p2T4 |
| 5 | D4 | 1+2T+8T2+2pT3+p2T4 |
| 7 | D4 | 1−4T+15T2−4pT3+p2T4 |
| 11 | D4 | 1−6T+28T2−6pT3+p2T4 |
| 13 | C2 | (1−T+pT2)2 |
| 17 | D4 | 1−10T+56T2−10pT3+p2T4 |
| 19 | D4 | 1−4T+30T2−4pT3+p2T4 |
| 29 | D4 | 1+2T−16T2+2pT3+p2T4 |
| 31 | C2 | (1+2T+pT2)2 |
| 37 | D4 | 1−4T+51T2−4pT3+p2T4 |
| 41 | D4 | 1−12T+106T2−12pT3+p2T4 |
| 43 | D4 | 1−16T+147T2−16pT3+p2T4 |
| 47 | D4 | 1+6T+76T2+6pT3+p2T4 |
| 53 | D4 | 1+4T+62T2+4pT3+p2T4 |
| 59 | D4 | 1+2T+44T2+2pT3+p2T4 |
| 61 | D4 | 1+4T+99T2+4pT3+p2T4 |
| 67 | D4 | 1+24T+275T2+24pT3+p2T4 |
| 71 | D4 | 1+2T+116T2+2pT3+p2T4 |
| 73 | C22 | 1+98T2+p2T4 |
| 79 | C2 | (1−4T+pT2)2 |
| 83 | C2 | (1−6T+pT2)2 |
| 89 | D4 | 1+6T+160T2+6pT3+p2T4 |
| 97 | D4 | 1+16T+210T2+16pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.710726678137462680201816035408, −9.273722835226276255482589970341, −8.888471249866983017775379926225, −8.034279992757575114953332093505, −7.65462685401747016378657310678, −7.61985594474241822079543889054, −7.46668596655168341563425077685, −6.62611056376319661147003609877, −6.05489698175622977188308942900, −5.88921889767383060529179561493, −5.43750904875789304335230630180, −5.10209092005732472593233544989, −4.40472903806115616935550056854, −4.39917985335952551983996414399, −3.73095764450750418493617157698, −3.69155295897364332914274447322, −2.89923121676509354618852588056, −1.73504804923049686111992196544, −1.30060884479117841379766125597, −1.03062855264119002155536407222,
1.03062855264119002155536407222, 1.30060884479117841379766125597, 1.73504804923049686111992196544, 2.89923121676509354618852588056, 3.69155295897364332914274447322, 3.73095764450750418493617157698, 4.39917985335952551983996414399, 4.40472903806115616935550056854, 5.10209092005732472593233544989, 5.43750904875789304335230630180, 5.88921889767383060529179561493, 6.05489698175622977188308942900, 6.62611056376319661147003609877, 7.46668596655168341563425077685, 7.61985594474241822079543889054, 7.65462685401747016378657310678, 8.034279992757575114953332093505, 8.888471249866983017775379926225, 9.273722835226276255482589970341, 9.710726678137462680201816035408