L(s) = 1 | − 0.732·2-s − 3-s − 1.46·4-s + 0.732·5-s + 0.732·6-s + 3.73·7-s + 2.53·8-s + 9-s − 0.535·10-s + 4.73·11-s + 1.46·12-s + 13-s − 2.73·14-s − 0.732·15-s + 1.07·16-s + 3.26·17-s − 0.732·18-s + 5.46·19-s − 1.07·20-s − 3.73·21-s − 3.46·22-s − 2.53·24-s − 4.46·25-s − 0.732·26-s − 27-s − 5.46·28-s − 9.66·29-s + ⋯ |
L(s) = 1 | − 0.517·2-s − 0.577·3-s − 0.732·4-s + 0.327·5-s + 0.298·6-s + 1.41·7-s + 0.896·8-s + 0.333·9-s − 0.169·10-s + 1.42·11-s + 0.422·12-s + 0.277·13-s − 0.730·14-s − 0.189·15-s + 0.267·16-s + 0.792·17-s − 0.172·18-s + 1.25·19-s − 0.239·20-s − 0.814·21-s − 0.738·22-s − 0.517·24-s − 0.892·25-s − 0.143·26-s − 0.192·27-s − 1.03·28-s − 1.79·29-s + ⋯ |
Λ(s)=(=(1587s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(1587s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.321950224 |
L(21) |
≈ |
1.321950224 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+T |
| 23 | 1 |
good | 2 | 1+0.732T+2T2 |
| 5 | 1−0.732T+5T2 |
| 7 | 1−3.73T+7T2 |
| 11 | 1−4.73T+11T2 |
| 13 | 1−T+13T2 |
| 17 | 1−3.26T+17T2 |
| 19 | 1−5.46T+19T2 |
| 29 | 1+9.66T+29T2 |
| 31 | 1+2T+31T2 |
| 37 | 1+3.19T+37T2 |
| 41 | 1−9.46T+41T2 |
| 43 | 1−9.73T+43T2 |
| 47 | 1−2.19T+47T2 |
| 53 | 1−4.92T+53T2 |
| 59 | 1−7.66T+59T2 |
| 61 | 1+7.19T+61T2 |
| 67 | 1+13.7T+67T2 |
| 71 | 1+6.19T+71T2 |
| 73 | 1+6.92T+73T2 |
| 79 | 1−4T+79T2 |
| 83 | 1−6T+83T2 |
| 89 | 1+8.19T+89T2 |
| 97 | 1+1.07T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.273722835226276255482589970341, −8.888471249866983017775379926225, −7.61985594474241822079543889054, −7.46668596655168341563425077685, −5.88921889767383060529179561493, −5.43750904875789304335230630180, −4.40472903806115616935550056854, −3.73095764450750418493617157698, −1.73504804923049686111992196544, −1.03062855264119002155536407222,
1.03062855264119002155536407222, 1.73504804923049686111992196544, 3.73095764450750418493617157698, 4.40472903806115616935550056854, 5.43750904875789304335230630180, 5.88921889767383060529179561493, 7.46668596655168341563425077685, 7.61985594474241822079543889054, 8.888471249866983017775379926225, 9.273722835226276255482589970341