L(s) = 1 | + (0.173 + 0.984i)3-s + (0.173 + 0.984i)7-s + (−0.939 + 0.342i)9-s + (1.76 − 0.642i)13-s + (−0.5 + 0.866i)19-s + (−0.939 + 0.342i)21-s + (0.766 + 0.642i)25-s + (−0.5 − 0.866i)27-s − 1.87·31-s + (−0.173 + 0.300i)37-s + (0.939 + 1.62i)39-s + (0.0603 + 0.342i)43-s + (−0.939 + 0.342i)49-s + (−0.939 − 0.342i)57-s + (0.266 + 0.223i)61-s + ⋯ |
L(s) = 1 | + (0.173 + 0.984i)3-s + (0.173 + 0.984i)7-s + (−0.939 + 0.342i)9-s + (1.76 − 0.642i)13-s + (−0.5 + 0.866i)19-s + (−0.939 + 0.342i)21-s + (0.766 + 0.642i)25-s + (−0.5 − 0.866i)27-s − 1.87·31-s + (−0.173 + 0.300i)37-s + (0.939 + 1.62i)39-s + (0.0603 + 0.342i)43-s + (−0.939 + 0.342i)49-s + (−0.939 − 0.342i)57-s + (0.266 + 0.223i)61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1596 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0482 - 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1596 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0482 - 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.192128809\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.192128809\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.173 - 0.984i)T \) |
| 7 | \( 1 + (-0.173 - 0.984i)T \) |
| 19 | \( 1 + (0.5 - 0.866i)T \) |
good | 5 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 11 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (-1.76 + 0.642i)T + (0.766 - 0.642i)T^{2} \) |
| 17 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 23 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 29 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 31 | \( 1 + 1.87T + T^{2} \) |
| 37 | \( 1 + (0.173 - 0.300i)T + (-0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 43 | \( 1 + (-0.0603 - 0.342i)T + (-0.939 + 0.342i)T^{2} \) |
| 47 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 53 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 59 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 61 | \( 1 + (-0.266 - 0.223i)T + (0.173 + 0.984i)T^{2} \) |
| 67 | \( 1 + (-0.0603 + 0.342i)T + (-0.939 - 0.342i)T^{2} \) |
| 71 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 73 | \( 1 + (0.326 + 1.85i)T + (-0.939 + 0.342i)T^{2} \) |
| 79 | \( 1 + (-1.17 + 0.984i)T + (0.173 - 0.984i)T^{2} \) |
| 83 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 97 | \( 1 + (0.766 - 0.642i)T + (0.173 - 0.984i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.711848779255420096206136497812, −8.884997559963138662183683786783, −8.545551400930209065350880723206, −7.67363321466695817183166611575, −6.23773209436227796620166596918, −5.70740360040077895755355283477, −4.91087616414156810167412372818, −3.74547319776564807523766518232, −3.15365994598183245386270133289, −1.80082444667734776313440011821,
1.00330758056010525985839703767, 2.07688843088773649105234915975, 3.41616083772618555694400357514, 4.19362631980387694711782121337, 5.43991246132106040028147934552, 6.46191603709004352906730829695, 6.91455107971598333496535764746, 7.74242428806683944381167847045, 8.648454629569131325985780672772, 9.041401235950326453023159179679