L(s) = 1 | + 2·3-s − 2·5-s − 2·7-s + 3·9-s − 8·13-s − 4·15-s − 2·17-s − 2·19-s − 4·21-s − 8·23-s − 4·25-s + 4·27-s − 2·29-s − 4·31-s + 4·35-s − 8·37-s − 16·39-s − 12·41-s − 6·45-s + 2·47-s + 3·49-s − 4·51-s + 14·53-s − 4·57-s − 8·59-s − 8·61-s − 6·63-s + ⋯ |
L(s) = 1 | + 1.15·3-s − 0.894·5-s − 0.755·7-s + 9-s − 2.21·13-s − 1.03·15-s − 0.485·17-s − 0.458·19-s − 0.872·21-s − 1.66·23-s − 4/5·25-s + 0.769·27-s − 0.371·29-s − 0.718·31-s + 0.676·35-s − 1.31·37-s − 2.56·39-s − 1.87·41-s − 0.894·45-s + 0.291·47-s + 3/7·49-s − 0.560·51-s + 1.92·53-s − 0.529·57-s − 1.04·59-s − 1.02·61-s − 0.755·63-s + ⋯ |
Λ(s)=(=(2547216s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(2547216s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
2547216
= 24⋅32⋅72⋅192
|
Sign: |
1
|
Analytic conductor: |
162.412 |
Root analytic conductor: |
3.56989 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 2547216, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C1 | (1−T)2 |
| 7 | C1 | (1+T)2 |
| 19 | C1 | (1+T)2 |
good | 5 | D4 | 1+2T+8T2+2pT3+p2T4 |
| 11 | C22 | 1+10T2+p2T4 |
| 13 | C2 | (1+4T+pT2)2 |
| 17 | D4 | 1+2T+8T2+2pT3+p2T4 |
| 23 | D4 | 1+8T+50T2+8pT3+p2T4 |
| 29 | D4 | 1+2T+32T2+2pT3+p2T4 |
| 31 | D4 | 1+4T+18T2+4pT3+p2T4 |
| 37 | D4 | 1+8T+78T2+8pT3+p2T4 |
| 41 | D4 | 1+12T+106T2+12pT3+p2T4 |
| 43 | C22 | 1+74T2+p2T4 |
| 47 | D4 | 1−2T+92T2−2pT3+p2T4 |
| 53 | D4 | 1−14T+152T2−14pT3+p2T4 |
| 59 | D4 | 1+8T+86T2+8pT3+p2T4 |
| 61 | D4 | 1+8T+30T2+8pT3+p2T4 |
| 67 | D4 | 1+4T+126T2+4pT3+p2T4 |
| 71 | D4 | 1−10T+140T2−10pT3+p2T4 |
| 73 | D4 | 1+4T−42T2+4pT3+p2T4 |
| 79 | D4 | 1+20T+246T2+20pT3+p2T4 |
| 83 | D4 | 1+6T+172T2+6pT3+p2T4 |
| 89 | D4 | 1−12T+202T2−12pT3+p2T4 |
| 97 | C2 | (1+6T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.049756608322081150738194287119, −8.937904194160606182488496591659, −8.269437357771425466382722793017, −8.151184128319022201781218678710, −7.50335456242339517333425498000, −7.40704885167260961065635383357, −6.85319567342577352402456201956, −6.75756065243963087479864872555, −5.77389054622750536507354432462, −5.68748622098255744291745446945, −4.83145021884166292200148545044, −4.55381018080794315093605473201, −3.87618389872982774635788888351, −3.81769987381258158511808038358, −3.12755645889295944342395056228, −2.65895010302699426090860535190, −2.06685566834651565159805977056, −1.74629627466307893717266668862, 0, 0,
1.74629627466307893717266668862, 2.06685566834651565159805977056, 2.65895010302699426090860535190, 3.12755645889295944342395056228, 3.81769987381258158511808038358, 3.87618389872982774635788888351, 4.55381018080794315093605473201, 4.83145021884166292200148545044, 5.68748622098255744291745446945, 5.77389054622750536507354432462, 6.75756065243963087479864872555, 6.85319567342577352402456201956, 7.40704885167260961065635383357, 7.50335456242339517333425498000, 8.151184128319022201781218678710, 8.269437357771425466382722793017, 8.937904194160606182488496591659, 9.049756608322081150738194287119