Properties

Label 2-1596-1.1-c1-0-7
Degree $2$
Conductor $1596$
Sign $1$
Analytic cond. $12.7441$
Root an. cond. $3.56989$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 2.91·5-s + 7-s + 9-s + 2·11-s − 4.35·13-s + 2.91·15-s + 2.91·17-s − 19-s + 21-s + 2·23-s + 3.51·25-s + 27-s + 7.79·29-s + 6.35·31-s + 2·33-s + 2.91·35-s − 3.83·37-s − 4.35·39-s − 4·41-s + 3.48·43-s + 2.91·45-s − 11.6·47-s + 49-s + 2.91·51-s − 0.918·53-s + 5.83·55-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.30·5-s + 0.377·7-s + 0.333·9-s + 0.603·11-s − 1.20·13-s + 0.753·15-s + 0.707·17-s − 0.229·19-s + 0.218·21-s + 0.417·23-s + 0.703·25-s + 0.192·27-s + 1.44·29-s + 1.14·31-s + 0.348·33-s + 0.493·35-s − 0.630·37-s − 0.697·39-s − 0.624·41-s + 0.531·43-s + 0.435·45-s − 1.69·47-s + 0.142·49-s + 0.408·51-s − 0.126·53-s + 0.787·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1596 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1596 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1596\)    =    \(2^{2} \cdot 3 \cdot 7 \cdot 19\)
Sign: $1$
Analytic conductor: \(12.7441\)
Root analytic conductor: \(3.56989\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1596,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.861966991\)
\(L(\frac12)\) \(\approx\) \(2.861966991\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 - T \)
19 \( 1 + T \)
good5 \( 1 - 2.91T + 5T^{2} \)
11 \( 1 - 2T + 11T^{2} \)
13 \( 1 + 4.35T + 13T^{2} \)
17 \( 1 - 2.91T + 17T^{2} \)
23 \( 1 - 2T + 23T^{2} \)
29 \( 1 - 7.79T + 29T^{2} \)
31 \( 1 - 6.35T + 31T^{2} \)
37 \( 1 + 3.83T + 37T^{2} \)
41 \( 1 + 4T + 41T^{2} \)
43 \( 1 - 3.48T + 43T^{2} \)
47 \( 1 + 11.6T + 47T^{2} \)
53 \( 1 + 0.918T + 53T^{2} \)
59 \( 1 + 59T^{2} \)
61 \( 1 - 0.162T + 61T^{2} \)
67 \( 1 + 5.83T + 67T^{2} \)
71 \( 1 - 0.918T + 71T^{2} \)
73 \( 1 + 6.70T + 73T^{2} \)
79 \( 1 - 10.8T + 79T^{2} \)
83 \( 1 - 5.79T + 83T^{2} \)
89 \( 1 + 4T + 89T^{2} \)
97 \( 1 + 2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.547787593558656487925929022361, −8.679409444563745742175813579512, −7.930744521178087974144250441157, −6.93148009464776589357909499628, −6.26099703625189934534839907884, −5.20838821913869724809134731830, −4.54395433180835315932415638654, −3.17037840293012098446784162941, −2.30063876972330465210971497241, −1.31841490372910178337790013612, 1.31841490372910178337790013612, 2.30063876972330465210971497241, 3.17037840293012098446784162941, 4.54395433180835315932415638654, 5.20838821913869724809134731830, 6.26099703625189934534839907884, 6.93148009464776589357909499628, 7.930744521178087974144250441157, 8.679409444563745742175813579512, 9.547787593558656487925929022361

Graph of the $Z$-function along the critical line