Properties

Label 2-2e4-1.1-c27-0-2
Degree $2$
Conductor $16$
Sign $1$
Analytic cond. $73.8968$
Root an. cond. $8.59633$
Motivic weight $27$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.48e5·3-s − 3.54e9·5-s + 2.27e11·7-s − 7.56e12·9-s + 1.01e13·11-s + 6.50e14·13-s − 8.81e14·15-s − 6.16e16·17-s − 2.66e17·19-s + 5.65e16·21-s + 2.43e18·23-s + 5.10e18·25-s − 3.77e18·27-s + 5.02e18·29-s − 2.01e19·31-s + 2.53e18·33-s − 8.05e20·35-s + 1.50e21·37-s + 1.61e20·39-s + 4.94e21·41-s − 1.43e22·43-s + 2.68e22·45-s − 4.74e22·47-s − 1.39e22·49-s − 1.53e22·51-s + 2.37e23·53-s − 3.61e22·55-s + ⋯
L(s)  = 1  + 0.0900·3-s − 1.29·5-s + 0.887·7-s − 0.991·9-s + 0.0890·11-s + 0.595·13-s − 0.116·15-s − 1.51·17-s − 1.45·19-s + 0.0798·21-s + 1.00·23-s + 0.685·25-s − 0.179·27-s + 0.0908·29-s − 0.148·31-s + 0.00802·33-s − 1.15·35-s + 1.01·37-s + 0.0536·39-s + 0.834·41-s − 1.27·43-s + 1.28·45-s − 1.26·47-s − 0.213·49-s − 0.136·51-s + 1.25·53-s − 0.115·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 16 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(28-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 16 ^{s/2} \, \Gamma_{\C}(s+27/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(16\)    =    \(2^{4}\)
Sign: $1$
Analytic conductor: \(73.8968\)
Root analytic conductor: \(8.59633\)
Motivic weight: \(27\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 16,\ (\ :27/2),\ 1)\)

Particular Values

\(L(14)\) \(\approx\) \(1.229592514\)
\(L(\frac12)\) \(\approx\) \(1.229592514\)
\(L(\frac{29}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
good3 \( 1 - 2.48e5T + 7.62e12T^{2} \)
5 \( 1 + 3.54e9T + 7.45e18T^{2} \)
7 \( 1 - 2.27e11T + 6.57e22T^{2} \)
11 \( 1 - 1.01e13T + 1.31e28T^{2} \)
13 \( 1 - 6.50e14T + 1.19e30T^{2} \)
17 \( 1 + 6.16e16T + 1.66e33T^{2} \)
19 \( 1 + 2.66e17T + 3.36e34T^{2} \)
23 \( 1 - 2.43e18T + 5.84e36T^{2} \)
29 \( 1 - 5.02e18T + 3.05e39T^{2} \)
31 \( 1 + 2.01e19T + 1.84e40T^{2} \)
37 \( 1 - 1.50e21T + 2.19e42T^{2} \)
41 \( 1 - 4.94e21T + 3.50e43T^{2} \)
43 \( 1 + 1.43e22T + 1.26e44T^{2} \)
47 \( 1 + 4.74e22T + 1.40e45T^{2} \)
53 \( 1 - 2.37e23T + 3.59e46T^{2} \)
59 \( 1 - 1.40e24T + 6.50e47T^{2} \)
61 \( 1 + 1.05e24T + 1.59e48T^{2} \)
67 \( 1 - 7.87e24T + 2.01e49T^{2} \)
71 \( 1 - 1.00e25T + 9.63e49T^{2} \)
73 \( 1 - 2.10e25T + 2.04e50T^{2} \)
79 \( 1 + 5.00e25T + 1.72e51T^{2} \)
83 \( 1 - 1.13e26T + 6.53e51T^{2} \)
89 \( 1 - 1.60e26T + 4.30e52T^{2} \)
97 \( 1 + 2.68e26T + 4.39e53T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.06235111946906377698459899186, −11.46186414060994266142064459640, −11.05097098764588178388013438414, −8.750118219323210989983526360573, −8.095224266438183877299494351856, −6.57073315211889655529592969267, −4.82995365379324659246786382869, −3.75495169619207074709089139478, −2.24755530357198709186379764393, −0.55369091138267194760748460350, 0.55369091138267194760748460350, 2.24755530357198709186379764393, 3.75495169619207074709089139478, 4.82995365379324659246786382869, 6.57073315211889655529592969267, 8.095224266438183877299494351856, 8.750118219323210989983526360573, 11.05097098764588178388013438414, 11.46186414060994266142064459640, 13.06235111946906377698459899186

Graph of the $Z$-function along the critical line