L(s) = 1 | + (−6.84e3 + 9.34e3i)2-s + (2.95e6 − 2.95e6i)3-s + (−4.04e7 − 1.27e8i)4-s + (6.75e8 + 6.75e8i)5-s + (7.38e9 + 4.78e10i)6-s − 3.29e11i·7-s + (1.47e12 + 4.98e11i)8-s − 9.87e12i·9-s + (−1.09e13 + 1.68e12i)10-s + (−1.51e13 − 1.51e13i)11-s + (−4.98e14 − 2.58e14i)12-s + (−4.13e14 + 4.13e14i)13-s + (3.08e15 + 2.25e15i)14-s + 3.99e15·15-s + (−1.47e16 + 1.03e16i)16-s − 6.20e16·17-s + ⋯ |
L(s) = 1 | + (−0.591 + 0.806i)2-s + (1.07 − 1.07i)3-s + (−0.301 − 0.953i)4-s + (0.247 + 0.247i)5-s + (0.230 + 1.49i)6-s − 1.28i·7-s + (0.947 + 0.320i)8-s − 1.29i·9-s + (−0.346 + 0.0533i)10-s + (−0.132 − 0.132i)11-s + (−1.34 − 0.698i)12-s + (−0.378 + 0.378i)13-s + (1.03 + 0.760i)14-s + 0.530·15-s + (−0.818 + 0.574i)16-s − 1.51·17-s + ⋯ |
Λ(s)=(=(16s/2ΓC(s)L(s)(−0.976+0.217i)Λ(28−s)
Λ(s)=(=(16s/2ΓC(s+27/2)L(s)(−0.976+0.217i)Λ(1−s)
Degree: |
2 |
Conductor: |
16
= 24
|
Sign: |
−0.976+0.217i
|
Analytic conductor: |
73.8968 |
Root analytic conductor: |
8.59633 |
Motivic weight: |
27 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ16(5,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 16, ( :27/2), −0.976+0.217i)
|
Particular Values
L(14) |
≈ |
1.051214538 |
L(21) |
≈ |
1.051214538 |
L(229) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(6.84e3−9.34e3i)T |
good | 3 | 1+(−2.95e6+2.95e6i)T−7.62e12iT2 |
| 5 | 1+(−6.75e8−6.75e8i)T+7.45e18iT2 |
| 7 | 1+3.29e11iT−6.57e22T2 |
| 11 | 1+(1.51e13+1.51e13i)T+1.31e28iT2 |
| 13 | 1+(4.13e14−4.13e14i)T−1.19e30iT2 |
| 17 | 1+6.20e16T+1.66e33T2 |
| 19 | 1+(−1.52e17+1.52e17i)T−3.36e34iT2 |
| 23 | 1+2.08e18iT−5.84e36T2 |
| 29 | 1+(1.58e19−1.58e19i)T−3.05e39iT2 |
| 31 | 1+1.09e20T+1.84e40T2 |
| 37 | 1+(−7.19e20−7.19e20i)T+2.19e42iT2 |
| 41 | 1−8.61e21iT−3.50e43T2 |
| 43 | 1+(−1.75e21−1.75e21i)T+1.26e44iT2 |
| 47 | 1−1.47e22T+1.40e45T2 |
| 53 | 1+(2.01e23+2.01e23i)T+3.59e46iT2 |
| 59 | 1+(−9.87e22−9.87e22i)T+6.50e47iT2 |
| 61 | 1+(9.38e23−9.38e23i)T−1.59e48iT2 |
| 67 | 1+(2.27e24−2.27e24i)T−2.01e49iT2 |
| 71 | 1+9.77e24iT−9.63e49T2 |
| 73 | 1−1.86e25iT−2.04e50T2 |
| 79 | 1−6.34e25T+1.72e51T2 |
| 83 | 1+(7.33e25−7.33e25i)T−6.53e51iT2 |
| 89 | 1+3.71e26iT−4.30e52T2 |
| 97 | 1+2.24e26T+4.39e53T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.19058048790582830387736299082, −10.91595797141228816666297575760, −9.481895978366492302383172897958, −8.293762817392725592149478336038, −7.20976543332528418700932656818, −6.59441407396138371219969352305, −4.48209474878273584713207372716, −2.58403065864523778335745081155, −1.37045908619897524653307093433, −0.24820173663156585387341877960,
1.85010374533680320129993083067, 2.74811792501876156401666587116, 3.86249718336451673249110985517, 5.27223966975023979359973382337, 7.80202490505116719541922113908, 9.116128401962582296322268033262, 9.384130606612039579463463760718, 10.83733565153397886868899581435, 12.28685940210181516974726991559, 13.61556909059887025212363532236