L(s) = 1 | + 10·25-s + 24·29-s + 2·81-s − 24·89-s − 72·101-s − 44·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 52·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + ⋯ |
L(s) = 1 | + 2·25-s + 4.45·29-s + 2/9·81-s − 2.54·89-s − 7.16·101-s − 4·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 4·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + 0.0669·223-s + 0.0663·227-s + 0.0660·229-s + ⋯ |
Λ(s)=(=((220⋅54)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((220⋅54)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
220⋅54
|
Sign: |
1
|
Analytic conductor: |
2.66433 |
Root analytic conductor: |
1.13031 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 220⋅54, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.457780710 |
L(21) |
≈ |
1.457780710 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | C2 | (1−pT2)2 |
good | 3 | C22×C22 | (1−2T+2T2−2pT3+p2T4)(1+2T+2T2+2pT3+p2T4) |
| 7 | C22×C22 | (1−6T+18T2−6pT3+p2T4)(1+6T+18T2+6pT3+p2T4) |
| 11 | C2 | (1+pT2)4 |
| 13 | C2 | (1−pT2)4 |
| 17 | C2 | (1−pT2)4 |
| 19 | C2 | (1+pT2)4 |
| 23 | C22×C22 | (1−2T+2T2−2pT3+p2T4)(1+2T+2T2+2pT3+p2T4) |
| 29 | C2 | (1−6T+pT2)4 |
| 31 | C2 | (1+pT2)4 |
| 37 | C2 | (1−pT2)4 |
| 41 | C22 | (1+62T2+p2T4)2 |
| 43 | C22×C22 | (1−18T+162T2−18pT3+p2T4)(1+18T+162T2+18pT3+p2T4) |
| 47 | C22×C22 | (1−14T+98T2−14pT3+p2T4)(1+14T+98T2+14pT3+p2T4) |
| 53 | C2 | (1−pT2)4 |
| 59 | C2 | (1+pT2)4 |
| 61 | C22 | (1−58T2+p2T4)2 |
| 67 | C22×C22 | (1−6T+18T2−6pT3+p2T4)(1+6T+18T2+6pT3+p2T4) |
| 71 | C2 | (1+pT2)4 |
| 73 | C2 | (1−pT2)4 |
| 79 | C2 | (1+pT2)4 |
| 83 | C22×C22 | (1−22T+242T2−22pT3+p2T4)(1+22T+242T2+22pT3+p2T4) |
| 89 | C2 | (1+6T+pT2)4 |
| 97 | C2 | (1−pT2)4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.376028053791290275288534376888, −9.300931496355539349042987080767, −8.931235541128439524930930999071, −8.439039713800605599546754603685, −8.348622798880760706844654204351, −8.290531743834660130877881971853, −8.023666956296543312925465170693, −7.42541760646773038739521629905, −7.24428262020010073229159694421, −6.74347725118726718629208840651, −6.65989392962173684406985324141, −6.43519184526866561268525595499, −6.31002618409748606745822405705, −5.43352400992124616358714228380, −5.33588751391846393555097535154, −5.27231567091486983092416864152, −4.58001151796818634463342727799, −4.32262036432335171751972215288, −4.24641408342865867467795153238, −3.60042315231287594743817683746, −2.86185531446723818518215656358, −2.75334185645567540086841645499, −2.71110513399110985174563244987, −1.49656336476859230117027825145, −1.05253035425592649295608201792,
1.05253035425592649295608201792, 1.49656336476859230117027825145, 2.71110513399110985174563244987, 2.75334185645567540086841645499, 2.86185531446723818518215656358, 3.60042315231287594743817683746, 4.24641408342865867467795153238, 4.32262036432335171751972215288, 4.58001151796818634463342727799, 5.27231567091486983092416864152, 5.33588751391846393555097535154, 5.43352400992124616358714228380, 6.31002618409748606745822405705, 6.43519184526866561268525595499, 6.65989392962173684406985324141, 6.74347725118726718629208840651, 7.24428262020010073229159694421, 7.42541760646773038739521629905, 8.023666956296543312925465170693, 8.290531743834660130877881971853, 8.348622798880760706844654204351, 8.439039713800605599546754603685, 8.931235541128439524930930999071, 9.300931496355539349042987080767, 9.376028053791290275288534376888