L(s) = 1 | + (−1 + i)3-s + (1 + 2i)5-s + (−1 − i)7-s + i·9-s + 6i·11-s + (−1 − i)13-s + (−3 − i)15-s + (1 − i)17-s + 4·19-s + 2·21-s + (5 − 5i)23-s + (−3 + 4i)25-s + (−4 − 4i)27-s − 8i·29-s − 2i·31-s + ⋯ |
L(s) = 1 | + (−0.577 + 0.577i)3-s + (0.447 + 0.894i)5-s + (−0.377 − 0.377i)7-s + 0.333i·9-s + 1.80i·11-s + (−0.277 − 0.277i)13-s + (−0.774 − 0.258i)15-s + (0.242 − 0.242i)17-s + 0.917·19-s + 0.436·21-s + (1.04 − 1.04i)23-s + (−0.600 + 0.800i)25-s + (−0.769 − 0.769i)27-s − 1.48i·29-s − 0.359i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0898 - 0.995i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 160 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0898 - 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.701510 + 0.641101i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.701510 + 0.641101i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-1 - 2i)T \) |
good | 3 | \( 1 + (1 - i)T - 3iT^{2} \) |
| 7 | \( 1 + (1 + i)T + 7iT^{2} \) |
| 11 | \( 1 - 6iT - 11T^{2} \) |
| 13 | \( 1 + (1 + i)T + 13iT^{2} \) |
| 17 | \( 1 + (-1 + i)T - 17iT^{2} \) |
| 19 | \( 1 - 4T + 19T^{2} \) |
| 23 | \( 1 + (-5 + 5i)T - 23iT^{2} \) |
| 29 | \( 1 + 8iT - 29T^{2} \) |
| 31 | \( 1 + 2iT - 31T^{2} \) |
| 37 | \( 1 + (5 - 5i)T - 37iT^{2} \) |
| 41 | \( 1 - 6T + 41T^{2} \) |
| 43 | \( 1 + (-3 + 3i)T - 43iT^{2} \) |
| 47 | \( 1 + (-7 - 7i)T + 47iT^{2} \) |
| 53 | \( 1 + (1 + i)T + 53iT^{2} \) |
| 59 | \( 1 - 4T + 59T^{2} \) |
| 61 | \( 1 - 2T + 61T^{2} \) |
| 67 | \( 1 + (7 + 7i)T + 67iT^{2} \) |
| 71 | \( 1 - 6iT - 71T^{2} \) |
| 73 | \( 1 + (-9 - 9i)T + 73iT^{2} \) |
| 79 | \( 1 + 8T + 79T^{2} \) |
| 83 | \( 1 + (5 - 5i)T - 83iT^{2} \) |
| 89 | \( 1 - 89T^{2} \) |
| 97 | \( 1 + (3 - 3i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.12677797387634396171387640247, −12.02170692663250276549328285355, −10.92281188240218209976996052749, −10.07485291133370897386298538780, −9.608294248494044934125423362380, −7.62442994351652495618553157266, −6.81083599745482305637885064434, −5.45099286768068832275337042046, −4.31479746165326124901097683483, −2.53210305175926958911430710758,
1.07660708243586040684472500000, 3.35039622973022336506892140932, 5.37164686868675023044945954145, 5.95913764679941854902623536848, 7.26102270821270025689402728881, 8.764469932337465673096805489680, 9.332624203429572220075531583050, 10.86354213555925750386849642049, 11.84122163525417159032652226561, 12.60973931900205726092992753786